
Kotti
Release 1.3.0

2018-01-05

Contents

1 First Steps 3
1.1 Overview . 3
1.2 Installation . 4
1.3 Tutorial . 5

2 Narrative Documentation 17
2.1 Basic Topics . 17
2.2 Advanced Topics . 37

3 API 51
3.1 API Documentation . 51

4 Getting Help / Contributing 87
4.1 Getting Help . 87
4.2 Contributing . 87

5 Future and Past 89
5.1 Change History . 89

Python Module Index 109

i

ii

Kotti, Release 1.3.0

Kotti is a high-level, Pythonic web application framework based on Pyramid and SQLAlchemy. It includes an exten-
sible Content Management System called the Kotti CMS.

If you are a user of a Kotti system, and either found this page through browsing or searching, or were referred here,
you will likely want to go directly to the Kotti User Manual.

The documentation below is for developers of Kotti or applications built on top of it.

Contents 1

https://kotti-user-manual.readthedocs.io/

Kotti, Release 1.3.0

2 Contents

CHAPTER 1

First Steps

Get an overview of what you can do with Kotti, how to install it and how to create your first Kotti project / add on.

1.1 Overview

Kotti is most useful when you are developing CMS-like applications that

• have complex security requirements,

• use workflows, and/or

• work with hierarchical data.

Built on top of a number of best-of-breed software components, most notably Pyramid and SQLAlchemy, Kotti intro-
duces only a few concepts of its own, thus hopefully keeping the learning curve flat for the developer.

1.1.1 Features

You can try out the default installation on Kotti’s demo page.

The Kotti CMS is a content management system that’s heavily inspired by Plone. Its main features are:

• User-friendliness: editors can edit content where it appears; thus the edit interface is contextual and intuitive

• WYSIWYG editor: includes a rich text editor

• Responsive design: Kotti builds on Twitter Bootstrap, which looks good both on desktop and mobile

• Templating: easily extend the CMS with your own look & feel with little programming required (see Static
resource management)

• Add-ons: install a variety of add-ons and customize them as well as many aspects of the built-in CMS by use
of an INI configuration file (see Configuration)

• Security: the advanced user and permissions management is intuitive and scales to fit the requirements of large
organizations

3

http://docs.pylonsproject.org/projects/pyramid/dev/
http://www.sqlalchemy.org/
http://kottidemo.danielnouri.org/
http://plone.org/
http://twitter.github.com/bootstrap/

Kotti, Release 1.3.0

• Internationalized: the user interface is fully translatable, Unicode is used everywhere to store data (see Trans-
lations)

1.1.2 For developers

For developers, Kotti delivers a strong foundation for building different types of web applications that either extend or
replace the built-in CMS.

Developers can add and modify through a well-defined API:

• views,

• templates and layout (both via Pyramid),

• Content types,

• “portlets” (see kotti.views.slots),

• access control and the user database (see Security),

• workflows (via repoze.workflow),

• and much more.

Kotti has a down-to-earth API. Developers working with Kotti will most of the time make direct use of the Pyramid
and SQLAlchemy libraries. Other notable components used but not enforced by Kotti are Colander and Deform for
forms, and Chameleon for templating.

Kotti itself is developed on Github. You can check out Kotti’s source code via its GitHub repository. Use this com-
mand:

git clone git@github.com:Kotti/Kotti

Continuous testing against different versions of Python and with PostgreSQL, MySQL and SQLite and a complete test

coverage make Kotti a stable platform to work with.

1.1.3 Support

• Python 2.7 (Python 3 coming soon)

• Support for PostgreSQL, MySQL and SQLite (tested regularly), and a list of other SQL databases

• Support for WSGI and a variety of web servers, including Apache

1.2 Installation

1.2.1 Requirements

• Python 2.7 (Python 3 will be supported soon)

• virtualenv

• build_essential and python-dev (on Debian or Ubuntu) or

• Xcode (on OS X) or

• equivalent build toolchain for your OS.

4 Chapter 1. First Steps

http://docs.pylonsproject.org/projects/pyramid/dev/
http://docs.repoze.org/workflow/
http://docs.pylonsproject.org/projects/pyramid/dev/
http://www.sqlalchemy.org/
http://docs.pylonsproject.org/projects/colander/en/latest/
http://docs.pylonsproject.org/projects/deform/en/latest/
https://chameleon.readthedocs.io/
https://github.com/Kotti/Kotti
http://travis-ci.org/Kotti/Kotti
http://travis-ci.org/Kotti/Kotti
http://www.sqlalchemy.org/docs/core/engines.html#supported-databases
http://wsgi.org/wsgi/Servers
http://pypi.python.org/pypi/virtualenv

Kotti, Release 1.3.0

1.2.2 Installation using virtualenv

It is recommended to install Kotti inside a virtualenv:

virtualenv mysite
cd mysite
bin/pip install -r https://raw.github.com/Kotti/Kotti/stable/requirements.txt
bin/pip install Kotti

This will install the latest released version of Kotti and all its requirements into your virtualenv.

Kotti uses Paste Deploy for configuration and deployment. An example configuration file is included with Kotti’s
source distribution. Download it to your virtualenv directory (mysite):

wget https://raw.github.com/Kotti/Kotti/stable/app.ini

See the list of Kotti tags, perhaps to find the latest released version. You can search the Kotti listing on PyPI also, for
the latest Kotti release (Kotti with a capital K is Kotti itself, kotti_this and kotti_that are add-ons in the list on PyPI).

To run Kotti using the app.ini example configuration file:

bin/pserve app.ini

This command runs Waitress, Pyramid’s WSGI server, which Kotti uses as a default server. You will see console
output giving the local URL to view the site in a browser.

As you learn more, install other servers, with WSGI enabled, as needed. For instance, for Apache, you may install the
optional mod_wsgi module, or for Nginx, you may use choose to use uWSGI. See the Pyramid documentation for a
variety of server and server configuration options.

The pserve command above uses SQLite as the default database. On first run, Kotti will create a SQLite database called
Kotti.db in your mysite directory. Kotti includes support for PostgreSQL, MySQL and SQLite (tested regularly), and
other SQL databases. The default use of SQLite makes initial development easy. Although SQLite may prove to be
adequate for some deployments, Kotti is flexible for installation of your choice of database during development or at
deployment.

1.2.3 Installation using Docker (experimental)

This assumes that you already have Docker installed:

docker pull kotti/kotti
docker run -i -t -p 5000:5000 kotti/kotti

This should get you a running Kotti instance on port 5000.

1.3 Tutorial

Let’s learn by example. In this tutorial, we will:

• create and register a Kotti add-on package

• modify the look and feel of Kotti with a simple CSS example

• add content types

• add forms and custom views

1.3. Tutorial 5

http://pythonpaste.org/deploy/#the-config-file
https://github.com/Kotti/Kotti/tags
https://pypi.python.org/pypi?%3Aaction=search&term=kotti&submit=search
http://www.sqlalchemy.org/docs/core/engines.html#supported-databases
http://docker.io/

Kotti, Release 1.3.0

Note: If you have questions going through this tutorial, please post a message to the mailing list or join the #kotti
channel on irc.freenode.net to chat with other Kotti users who might be able to help.

The Tutorial assumes you have a virtualenv named mysite as described in Installation. It is split into three parts:

1.3.1 Tutorial Part 1: Creating an add-on and managing static resources

In the first part of the tutorial, we’ll create an add-on package, install and register the package with our site, and use a
simple CSS example to learn how Kotti manages static resources.

Kotti add-ons are proper Python packages. A number of them are available on PyPI. They include kotti_media, for
adding a set of video and audio content types to a site, kotti_gallery, for adding a photo album content type, kotti_blog,
for blog and blog entry content types, etc.

The add-on we will make, kotti_mysite, will be just like those, in that it will be a proper Python package
created with the same command line tools used to make kotti_media, kotti_blog, and the others. We will set up
kotti_mysite for our Kotti site, in the same way that we might wish later to install, for example, kotti_media.

So, we are working in the mysite directory, a virtualenv, as described in Installation. You should be able to start
Kotti, and load the front page.

We will create the add-on as mysite/kotti_mysite. kotti_mysite will be a proper Python package, instal-
lable into our virtualenv.

Creating the Add-On Package

To create our add-on, we use the standard Pyramid tool pcreate, with kotti_addon, a scaffold that was installed
as part of Kotti.

bin/pcreate -s kotti kotti_mysite

The script will ask a number of questions. It is safe to accept the defaults. When finished, observe that a new directory
called kotti_mysite was added to the current working directory, as mysite/kotti_mysite.

Installing Our New Add-On

To install the add-on (or any add-on, as discussed above) into our Kotti site, we’ll need to do two things:

• install the package into our virtualenv

• include the package inside our site’s app.ini

Note: Why two steps? Installation of our add-on as a Python package is different from activating the add-on in our
site. Consider that you might have multiple add-ons installed in a virtualenv, but you could elect to activate a subset
of them, as you experiment or develop add-ons.

To install the package into the virtualenv, we’ll change into the new kotti_mysite directory, and issue a python
setup.py develop. This will install the package in development mode:

cd kotti_mysite
../bin/python setup.py develop

6 Chapter 1. First Steps

http://groups.google.com/group/kotti
irc://irc.freenode.net/#kotti
irc://irc.freenode.net/#kotti
http://pypi.python.org/pypi?%3Aaction=search&term=kotti_&submit=search/
http://pypi.python.org/pypi/kotti_media/
http://pypi.python.org/pypi/kotti_gallery/
http://pypi.python.org/pypi/kotti_blog/
http://pypi.python.org/pypi/kotti_media/
http://pypi.python.org/pypi/kotti_blog/
http://pypi.python.org/pypi/kotti_media/

Kotti, Release 1.3.0

Note: python setup.py install is for normal installation of a finished package, but here, for
kotti_mysite, we will be developing it for some time, so we use python setup.py develop. Using this
mode, a special link file is created in the site-packages directory of your virtualenv. This link points to the add-on
directory, so that any changes you make to the software will be reflected immediately without having to do an install
again.

Step two is configuring our Kotti site to include our new kotti_mysite package. To do this, open the app.ini
file, which you downloaded during Installation. Find the line that says:

kotti.configurators = kotti_tinymce.kotti_configure

And add kotti_mysite.kotti_configure to it:

kotti.configurators =
kotti_tinymce.kotti_configure
kotti_mysite.kotti_configure

At this point, you should be able to restart the application, but you won’t notice anything different. Let’s make a simple
CSS change and use it to see how Kotti manages static resources.

Static Resources

Kotti uses fanstatic for managing its static resources.

Take a look at kotti_mysite/kotti_mysite/fanstatic.py to see how this is done:

from fanstatic import Group
from fanstatic import Library
from fanstatic import Resource

library = Library("kotti_mysite", "static")

css = Resource(
library,
"styles.css",
minified="styles.min.css")

js = Resource(
library,
"scripts.js",
minified="scripts.min.js")

css_and_js = Group([css, js])

The css and js resources each define files we can use for our css and js code. We will use style.css in our
example. Also note the css_and_js group. It shows up in the configuration code discussed below.

fanstatic has a number of cool features – you may want to check out their homepage to find out more.

A Simple Example

Let’s make a simple CSS change to see how this all works. Open kotti_mysite/kotti_mysite/static/
style.css and add the following code.

1.3. Tutorial 7

http://www.fanstatic.org/
http://www.fanstatic.org/

Kotti, Release 1.3.0

h1, h2, h3 {
text-shadow: 4px 4px 2px #ccc;

}

Now, restart the application and reload the front page.

cd ..
bin/pserve app.ini

Notice how the title has a shadow now?

Configuring the Package with kotti.configurators

Remember when we added kotti_mysite.kotti_configure to the kotti.configurators setting in
the app.ini configuration file? This is how we told Kotti to call additional code on start-up, so that add-ons have
a chance to configure themselves. The function in kotti_mysite that is called on application start-up lives in
kotti_mysite/kotti_mysite/__init__.py. Let’s take a look:

def kotti_configure(settings):
...
settings['kotti.fanstatic.view_needed'] += ' kotti_mysite.fanstatic.css_and_js'
...

Here, settings is a Python dictionary with all configuration variables in the [app:kotti] section of our app.
ini, plus the defaults. The values of this dictionary are merely strings. Notice how we add to the string kotti.
fanstatic.view_needed.

Note: Note the initial space in ‘ kotti_mysite.static.css_and_js’. This allows a handy use of += on different lines.
After concatenation of the string parts, blanks will delimit them.

This kotti.fanstatic.view_needed setting, in turn, controls which resources are loaded in the public inter-
face (as compared to the edit interface).

As you might have guessed, we could have also completely replaced Kotti’s resources for the public interface by
overriding the kotti.fanstatic.view_needed setting instead of adding to it, like this:

def kotti_configure(settings):
...
settings['kotti.fanstatic.view_needed'] = ' kotti_mysite.fanstatic.css_and_js'
...

This is useful if you’ve built your own custom theme. Alternatively, you can completely override the master template
for even more control (e.g. if you don’t want to use Bootstrap).

See also Configuration for a full list of Kotti’s configuration variables, and Static resource management for a more
complete discussion of how Kotti handles static resources through fanstatic.

In the next part of the tutorial, we’ll add our first content types, and add forms for them.

1.3.2 Tutorial Part 2: A Content Type

Kotti’s default content types include Document, Image and File. In this part of the tutorial, we’ll add to these
built-in content types by making a Poll content type which will allow visitors to view polls and vote on them.

8 Chapter 1. First Steps

Kotti, Release 1.3.0

Adding Models

When creating our add-on, the scaffolding added the file kotti_mysite/kotti_mysite/resources.py. If
you open resources.py you’ll see that it already contains code for a sample content type CustomContent along
with the following imports that we will use.

from kotti.resources import Content
from sqlalchemy import Column
from sqlalchemy import ForeignKey
from sqlalchemy import Integer

Add the following definition for the Poll content type to resources.py.

class Poll(Content):
id = Column(Integer(), ForeignKey('contents.id'), primary_key=True)

type_info = Content.type_info.copy(
name=u'Poll',
title=u'Poll',
add_view=u'add_poll',
addable_to=[u'Document'],

)

Things to note here:

• Kotti’s content types use SQLAlchemy for definition of persistence.

• Poll derives from kotti.resources.Content, which is the common base class for all content types.

• Poll declares a sqlalchemy.Column id, which is required to hook it up with SQLAlchemy’s inheritance.

• The type_info class attribute does essential configuration. We refer to name and title, two properties already
defined as part of Content, our base class. The add_view defines the name of the add view, which we’ll
come to in a second. Finally, addable_to defines which content types we can add Poll items to.

• We do not need to define any additional sqlalchemy.Column properties, as the title is the only property
we need for this content type.

We’ll add another content class to hold the choices for the poll. Add this into the same resources.py file:

class Choice(Content):
id = Column(Integer(), ForeignKey('contents.id'), primary_key=True)
votes = Column(Integer())

type_info = Content.type_info.copy(
name=u'Choice',
title=u'Choice',
add_view=u'add_choice',
addable_to=[u'Poll'],

)

def __init__(self, votes=0, **kwargs):
super(Choice, self).__init__(**kwargs)
self.votes = votes

The Choice class looks very similar to Poll. Notable differences are:

• It has an additional sqla.Column property called votes. We’ll use this to store how many votes were given for
the particular choice. We’ll again use the inherited title column to store the title of our choice.

1.3. Tutorial 9

http://www.sqlalchemy.org/

Kotti, Release 1.3.0

• The type_info defines the title, the add_view view, and that choices may only be added into Poll items,
with the line addable_to=[u'Poll'].

Adding Forms and a View

Views (including forms) are typically put into a module called views. The Kotti scaffolding further separates this
into view and edit files inside a views directory.

Open the file at kotti_mysite/kotti_mysite/views/edit.py. It already contains code for the
CustomContent sample content type. We will take advantage of the imports already there.

import colander
from kotti.views.edit import ContentSchema
from kotti.views.form import AddFormView
from kotti.views.form import EditFormView
from pyramid.view import view_config

from kotti_mysite import _

Some things to note:

• Colander is the library that we use to define our schemas. Colander allows us to validate schemas against form
data.

• Our class inherits from kotti.views.edit.ContentSchema which itself inherits from colander.
MappingSchema.

• _ is how we hook into i18n for translations.

Add the following code to views/edit.py:

class PollSchema(ContentSchema):
"""Schema for Poll"""

title = colander.SchemaNode(
colander.String(),
title=_(u'Question'),

)

class ChoiceSchema(ContentSchema):
"""Schema for Choice"""

title = colander.SchemaNode(
colander.String(),
title=_(u'Choice'),

)

The two classes define the schemas for our forms. The schemas specify which fields we want to display in the forms.
We want to display the title field.

Let’s move on to building the actual forms. Add this to views/edit.py:

from kotti_mysite.resources import Choice
from kotti_mysite.resources import Poll

@view_config(name='edit', context=Poll, permission='edit',
renderer='kotti:templates/edit/node.pt')

10 Chapter 1. First Steps

https://colander.readthedocs.io/

Kotti, Release 1.3.0

class PollEditForm(EditFormView):
schema_factory = PollSchema

@view_config(name=Poll.type_info.add_view, permission='add',
renderer='kotti:templates/edit/node.pt')

class PollAddForm(AddFormView):
schema_factory = PollSchema
add = Poll
item_type = u"Poll"

@view_config(name='edit', context=Choice, permission='edit',
renderer='kotti:templates/edit/node.pt')

class ChoiceEditForm(EditFormView):
schema_factory = ChoiceSchema

@view_config(name=Choice.type_info.add_view, permission='add',
renderer='kotti:templates/edit/node.pt')

class ChoiceAddForm(AddFormView):
schema_factory = ChoiceSchema
add = Choice
item_type = u"Choice"

Using the AddFormView and EditFormView base classes from Kotti, these forms are simple to define. We
associate the schemas defined above, setting them as the schema_factory for each form, and we specify the
content types to be added by each.

We use @view_config to add our views to the application. This takes advantage of a config.scan() call in
__init__.py discussed below. Notice that we can declare permission, context, and a template for each
form, along with its name.

Wiring up the Content Types and Forms

Before we can see things in action, we need to add a reference to our new content types in kotti_mysite/
kotti_mysite/__init__.py.

Open __init__.py and modify the kotti_configure method so that the settings['kotti.
available_types'] line looks like this.

def kotti_configure(settings):
...

settings['pyramid.includes'] += ' kotti_mysite'
settings['kotti.available_types'] += (

' kotti_mysite.resources.Poll' +
' kotti_mysite.resources.Choice')

settings['kotti.fanstatic.view_needed'] += (
' kotti_mysite.fanstatic.css_and_js')

...

Here, we’ve added our two content types to the site’s available_types, a global registry. We also removed the
CustomContent content type included with the scaffolding.

Notice the includeme method at the bottom of __init__.py. It includes the call to config.scan() that we
mentioned above while discussing the @view_config statements in our views.

1.3. Tutorial 11

Kotti, Release 1.3.0

def includeme(config):
...
config.scan(__name__)

You can see the Pyramid documentation for scan for more information.

Adding a Poll and Choices to the site

Let’s try adding a Poll and some choices to the site. Start the site up with the command

bin/pserve app.ini

Login with the username admin and password qwerty and click on the Add menu button. You should see a few choices,
namely the base Kotti classes Document, File and Image and the Content Type we added, Poll.

Lets go ahead and click on Poll. For the question, let’s write “What is your favourite color?”. Now let’s add three
choices, “Red”, “Green” and “Blue” in the same way we added the poll. Remember that you must be in the context
of the poll to add each choice.

If we now go to the poll we added, we can see the question, but not our choices, which is definitely not what we
wanted. Let us fix this, shall we?

Adding a custom View to the Poll

First, we need to write a view that will send the needed data (in our case, the choices we added to our poll). Here is
the code, added to view.py.

from kotti_mysite.fanstatic import css_and_js
from kotti_mysite.resources import Poll

@view_defaults(context=Poll)
class PollViews(BaseView):

""" Views for :class:`kotti_mysite.resources.Poll` """

@view_config(name='view', permission='view',
renderer='kotti_mysite:templates/poll.pt')

def poll_view(self):
css_and_js.need()
choices = self.context.children
return {

'choices': choices,
}

Since we want to show all Choices added to a Poll we can simply use the children attribute. This will return a
list of all the ‘children’ of a Poll which are exactly the Choices added to that particular Poll. The view returns a
dictionary of all choices under the keyword ‘choices’. The keywords a view returns are automatically available in it’s
template.

Next on, we need a template to actually show our data. It could look something like this. Create a folder named
templates and put the file poll.pt into it.

<!DOCTYPE html>
<html xmlns:tal="http://xml.zope.org/namespaces/tal"

xmlns:metal="http://xml.zope.org/namespaces/metal"
metal:use-macro="api.macro('kotti:templates/view/master.pt')">

12 Chapter 1. First Steps

http://docs.pylonsproject.org/docs/pyramid/en/latest/api/config.html#pyramid.config.Configurator.scan

Kotti, Release 1.3.0

<article metal:fill-slot="content" class="poll-view content">
<h1>${context.title}</h1>

<li tal:repeat="choice choices">${choice.title}

</article>

</html>

The first 6 lines are needed so our template plays nicely with the master template (so we keep the add/edit bar, base site
structure etc.). The next line prints out the context.title (our question) inside the <h1> tag and then prints all choices
(with links to the choice) as an unordered list.

Note: We are using two ‘magically available’ attributes in the template - context and choices.

• context is automatically available in all templates and as the name implies it is the context of the view (in
this case the Poll we are currently viewing).

• choices is available because we sent it to the template in the Python part of the view. You can of course send
multiple variables to the template, you just need to return them in your Python code.

With this, we are done with the second tutorial. Restart the application, take a look at the new Poll view and play
around with the template until you are completely satisfied with how our data is presented.

Note: If you will work with templates for a while (or any time you’re developing basically) using the pyramid
‘reload_templates’ and ‘debug_templates’ options is recommended, as they allow you to see changes to the template
without having to restart the application. These options need to be put in your configuration INI under the ‘[app:kotti]’
section.

[app:kotti]
pyramid.reload_templates = true
pyramid.debug_templates = true

In the next tutorial, we will learn how to enable our users to actually vote for one of the Poll options.

1.3.3 Tutorial Part 3: User interaction

In this part of the tutorial, we will change the site we made in the previous one so our users can actually vote on our
polls.

Enabling voting on Poll Choices

We will enable users to vote using a new view. When the user goes to that link, his or her vote will be saved and they
will be redirected back to the Poll.

First, let’s construct a new view. As before, add the following code to kotti_mysite/kotti_mysite/views/
view.py.

from kotti_mysite.resources import Choice
from pyramid.httpexceptions import HTTPFound

1.3. Tutorial 13

Kotti, Release 1.3.0

@view_defaults(context=Choice)
class ChoiceViews(BaseView):

""" Views for :class:`kotti_mysite.resources.Choice` """

@view_config(name='vote', permission='view')
def vote_view(self):

self.context.votes += 1
return HTTPFound(

location=self.request.resource_url(self.context.parent))

The view will be called on the Choice content type, so the context is the Choice itself. We add 1 to the current
votes of the Choice, then we do a redirect using pyramid.httpexceptions.HTTPFound. The location is the
parent of our context - the Poll in which our Choice resides.

With this, we can now vote on a Choice by appending /vote at the end of the Choice URL.

Changing the Poll view so we see the votes

First, we will add some extra content into our poll_view so we are able to show the distribution of votes across all
choices.

def poll_view(self):
css_and_js.need()
choices = self.context.values()
all_votes = sum(choice.votes for choice in choices)
return {

'choices': choices,
'all_votes': all_votes

}

Our view will now be able to get the sum of all votes in the poll via the all_votes variable. We will also want to
change the choices list to link to our new vote view. Open poll.pt and change the link into:

...
<li tal:repeat="choice choices">

${choice.title}

 (${choice.votes}/${all_votes})

...

This will add the number of votes/all_votes after each choice and enable us to vote by clicking on the choice. Fire up
the server and go test it now.

Adding an info block about voting on the view

As you can see, the voting now works, but it doesn’t look particularly good. Let us at least add a nice information
bubble when we vote. The easiest way to go about that is to use request.session.flash, which allows us to
flash different messages (success, error, info etc.). Change the vote_view to include the the flash message before
redirecting.

def vote_view(self):
self.context.votes += 1
self.request.session.flash(

14 Chapter 1. First Steps

https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound

Kotti, Release 1.3.0

u'You have just voted for the choice "{0}"'.format(
self.context.title), 'info')

return HTTPFound(
location=self.request.resource_url(self.context.parent))

Note: Don’t forget that since we changed the Python code, we need to restart the application, even if we enabled
template reloading and debugging!

As before, you are encouraged to play around a bit more, as you learn much by trying out new things. A few ideas on
what you could work on are:

• Change the Choice content type so it has an extra description field that is not required (if you change database
content, you will need to delete the database or do a migration). Then make a new Choice view that will list the
extra information.

• Make sure only authenticated users can vote, anonymous users should see the results but when trying to vote, it
should move them to the login page. Also make sure that each user can vote only once, and list all users who
voted for the Choice on the Choice’s view.

1.3. Tutorial 15

Kotti, Release 1.3.0

16 Chapter 1. First Steps

CHAPTER 2

Narrative Documentation

The narrative documentation contains various topics that explain how to use Kotti.

2.1 Basic Topics

2.1.1 Developer manual

Read the Configuration section first to understand which hooks both integrators and developers can use to customize
and extend Kotti.

Contents

• Developer manual

– Screencast tutorial

– Content types

– Add views, subscribers and more

– Working with content objects

– kotti.configurators

– Security

Screencast tutorial

Here’s a screencast that guides you through the process of creating a simple Kotti add-on for visitor comments:

17

Kotti, Release 1.3.0

Content types

Defining your own content types is easy. The implementation of the Document content type serves as an example
here:

from kotti.resources import Content

class Document(Content):
id = Column(Integer(), ForeignKey('contents.id'), primary_key=True)
body = Column(UnicodeText())
mime_type = Column(String(30))

type_info = Content.type_info.copy(
name=u'Document',
title=_(u'Document'),
add_view=u'add_document',
addable_to=[u'Document'],
)

def __init__(self, body=u"", mime_type='text/html', **kwargs):
super(Document, self).__init__(**kwargs)
self.body = body
self.mime_type = mime_type

The add_view parameter of the type_info attribute is the name of a view that can be used to construct a
Document instance. This view has to be available for all content types specified in addable_to parameter. See the
section below and the Adding Forms and a View section in the tutorial on how to define a view restricted to a specific
context.

You can configure the list of active content types in Kotti by modifying the kotti.available_types setting.

Note that when adding a relationship from your content type to another Node, you will need to add a primaryjoin
parameter to your relationship. An example:

from sqlalchemy.orm import relationship

class DocumentWithRelation(Document):
id = Column(Integer, ForeignKey('documents.id'), primary_key=True)
related_item_id = Column(Integer, ForeignKey('nodes.id'))
related_item = relationship(

'Node', primaryjoin='Node.id==DocumentWithRelation.related_item_id')

Add views, subscribers and more

pyramid.includes allows you to hook includeme functions that you can use to add views, subscribers, and more
aspects of Kotti. An includeme function takes the Pyramid Configurator API object as its sole argument.

Here’s an example that’ll override the default view for Files:

def my_file_view(request):
return {...}

def includeme(config):
config.add_view(

my_file_view,
name='view',
permission='view',

18 Chapter 2. Narrative Documentation

Kotti, Release 1.3.0

context=File,
)

To find out more about views and view registrations, please refer to the Pyramid documentation.

By adding the dotted name string of your includeme function to the pyramid.includes setting, you ask Kotti to call
it on application start-up. An example:

pyramid.includes = mypackage.views.includeme

Working with content objects

Every content node in the database (be it a document, a file. . .) is also a container for other nodes. You can access,
add and delete child nodes of a node through a dict-like interface. A node’s parent may be accessed through the
node.__parent__ property.

kotti.resources.get_root gives us the root node:

>>> from kotti.resources import get_root
>>> root = get_root()
>>> root.__parent__ is None
True
>>> root.title = u'A new title'

Let us add three documents to our root:

>>> from kotti.resources import Document
>>> root['first'] = Document(title=u'First page')
>>> root['second'] = Document(title=u'Second page')
>>> root['third'] = Document(title=u'Third page')

Note how the keys in the dict correspond to the name of child nodes:

>>> first = root['first']
>>> first.name
u'first'
>>> first.__parent__ == root
True
>>> third = root['third']

We can make a copy of a node by using the node.copy() method. We can delete child nodes from the database
using the del operator:

>>> first['copy-of-second'] = root['second'].copy()
>>> del root['second']

The lists of keys and values are ordered:

>>> root.keys()
[u'first', u'third']
>>> first.keys()
[u'copy-of-second']
>>> root.values()
[<Document ... at /first>, <Document ... at /third>]

There’s the node.children attribute should you ever need to change the order of the child nodes. node.
children is a SQLAlchmey ordered_list which keeps track of the order of child nodes for us:

2.1. Basic Topics 19

http://docs.pylonsproject.org/projects/pyramid/en/latest/

Kotti, Release 1.3.0

>>> root.children
[<Document ... at /first>, <Document ... at /third>]
>>> root.children[:] = [root.values()[-1], root.values()[0]]
>>> root.values()
[<Document ... at /third>, <Document ... at /first>]

Note: Removing an element from the nodes.children list will not delete the child node from the database. Use
del node[child_name] as above for that.

You can move a node by setting its __parent__:

>>> third.__parent__
<Document ... at />
>>> third.__parent__ = first
>>> root.keys()
[u'first']
>>> first.keys()
[u'copy-of-second', u'third']

Also see:

• kotti.views.slots

• kotti.events

kotti.configurators

Requiring users of your package to set all the configuration settings by hand in the Paste Deploy INI file is not ideal.
That’s why Kotti includes a configuration variable through which extending packages can set all other INI settings
through Python. Here’s an example of a function that programmatically modified kotti.base_includes and
kotti.principals_factory which would otherwise be configured by hand in the INI file:

in mypackage/__init__.py
def kotti_configure(config):

config['kotti.base_includes'] += ' mypackage.views'
config['kotti.principals_factory'] = 'mypackage.security.principals'

And this is how your users would hook it up in their INI file:

kotti.configurators = mypackage.kotti_configure

Security

Kotti uses Pyramid’s security API, most notably its support inherited access control lists support. On top of that, Kotti
defines roles and groups support: Users may be collected in groups, and groups may be given roles, which in turn
define permissions.

The site root’s ACL defines the default mapping of roles to their permissions:

root.__acl__ == [
['Allow', 'system.Everyone', ['view']],
['Allow', 'role:viewer', ['view']],
['Allow', 'role:editor', ['view', 'add', 'edit']],

20 Chapter 2. Narrative Documentation

http://docs.pylonsproject.org/projects/pyramid/dev/api/security.html
http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/security.html#acl-inheritance-and-location-awareness

Kotti, Release 1.3.0

['Allow', 'role:owner', ['view', 'add', 'edit', 'manage']],
]

Every Node object has an __acl__ attribute, allowing the definition of localized row-level security.

The kotti.security.set_groups() function allows assigning roles and groups to users in a given context.
kotti.security.list_groups() allows one to list the groups of a given user. You may also set the list of
groups globally on principal objects, which are of type kotti.security.Principal.

Kotti delegates adding, deleting and search of user objects to an interface it calls kotti.security.
AbstractPrincipals. You can configure Kotti to use a different Principals implementation by pointing
the kotti.principals_factory configuration setting to a different factory. The default setting here is:

kotti.principals_factory = kotti.security.principals_factory

There are views that you might want to override when you override the principal factory. That is, if you use different
columns in the database, then you will probably want to make changes to the deform schema as well.

These views are kotti.views.users.UsersManage, kotti.views.users.UserManage and kotti.
views.users.Preferences. Notice that you should override them using the standard way, that is, by overriding
setup-users, setup-user or prefs views. Then you can override any sub-view used inside them as well as
include any logic for your usecase when it is called, if needed.

2.1.2 Security

Kotti security is based on the concepts of users, groups, roles, permissions and workflow.

User A user is an entity that can authenticate himself.

Group A group is a collection of users or other groups.

Permission A permission describes what is allowed on an object.

Permissions are never directly assigned to users or groups but always aggregated in roles.

Role A Role is a collection of permissions.

Users or groups can have global or local roles.

Global Roles Global roles are assigned to a user or group via Kotti’s user management screens. They apply to
every object in a site. You should use them very rarely, maybe only assign the “Adminsitrator” role to the
“Administrator” group. This assignment is present by default in a fresh Kotti site.

Local Roles Local roles are assigned to a user or group via the “Sharing” screen of a content object. They
apply only to this object and its children.

Workflow The workflow keeps track of the current state of each object lifecycle to manage content security. There is
an initial state and you can move to other states thanks to transitions; each state defines a security matrix with
roles and permissions. By default Kotti provides a two-state workflow (private and public) for all object types
except files and images. Kotti’s workflow implementation is based on repoze.workflow.

How to create a new role

Small recipe you can use if you want to create a new role:

from kotti.security import (
Principal,
ROLES,
SHARING_ROLES,

2.1. Basic Topics 21

http://docs.repoze.org/workflow/

Kotti, Release 1.3.0

set_roles,
set_sharing_roles,
set_user_management_roles,
)

from kotti_yourpackage import _

def add_role(role_id, role_title):
""" Add role in share view and user management views """
UPDATED_ROLES = ROLES.copy()
UPDATED_ROLES[role_id] = Principal(role_id,

title=role_title)
UPDATED_SHARING_ROLES = list(SHARING_ROLES)
UPDATED_SHARING_ROLES.append(role_id)
set_roles(UPDATED_ROLES)
set_sharing_roles(UPDATED_SHARING_ROLES)
set_user_management_roles(UPDATED_SHARING_ROLES + ['role:admin'])

add_role(u'role:customer', _(u'Customer'))

Practically you can add the code above to any file, as long as it is imported on application startup. However, good
practice would be to add it to your add on’s __init__.py for small amounts of changes (like in the example) or to
a separate file for larger amounts.

Workflows

You can use an XML file (zcml) in order to describe your workflow. You can see an example here: workflow.zcml.

As you can see it is quite straightforward to add new states, transitions, permissions, etc. You can easily turn the default
2-state website workflow into something completely different or turn your Kotti app into an intranet application.

The default workflow definition is loaded from your project’s .ini file (using the kotti.use_workflow setting).
The kotti.use_workflow setting’s default value is:

kotti.use_workflow = kotti:workflow.zcml

You can change change the default workflow for your site, register new workflows related to specific content types or
disable it completely.

How to disable the default workflow

Kotti is shipped with a simple workflow definition based on private and public states. If your particular use case does
not require workflows at all, you can disable this feature with a non true value. For example:

kotti.use_workflow = 0

How to override the default workflow for all content types

The default workflow is quite useful for websites, but sometimes you need something different. Just point the kotti.
use_workflow setting to your zcml file:

kotti.use_workflow = kotti_yourplugin:workflow.zcml

22 Chapter 2. Narrative Documentation

https://github.com/Kotti/Kotti/blob/master/kotti/workflow.zcml.

Kotti, Release 1.3.0

The simplest way to deal with workflow definitions is:

1. create a copy of the default workflow definition and

2. customize it (change permissions, add new states, permissions, transitions, initial state and so on).

If you change workflow settings, you need to reset all your content’s workflow states and thus the permissions for all
objects under workflow control using the kotti-reset-workflow console script.

kotti-reset-workflow command usage

If you change workflow settings you’ll need to update security.

$ kotti-reset-workflow --help
Reset the workflow of all content objects in the database.

This is useful when you want to migrate an existing database to
use a different workflow. When run, this script will reset all
your content objects to use the new workflow, while trying to
preserve workflow state information.

For this command to work, all currently persisted states must map
directly to a state in the new workflow. As an example, if
there's a 'public' object in the database, the new workflow must
define 'public' also.

If this is not the case, you may choose to reset all your content
objects to the new workflow's *initial state* by passing the
'--purge-existing' option.

Usage:
kotti-reset-workflow <config_uri> [--purge-existing]

Options:
-h --help Show this screen.
--purge-existing Reset all objects to new workflow's initial state.

How to enable the standard workflow for images and files

Images and files are not associated with the default workflow. If you need a workflow for these items you need to
attach the IDefaultWorkflow marker interface.

You can add the following lines in your includeme function:

from zope.interface import implementer
from kotti.interfaces import IDefaultWorkflow
from kotti.resources import File
from kotti.resources import Image
...

def includeme(config):
...
enable workflow for images and files
implementer(IDefaultWorkflow)(Image)
implementer(IDefaultWorkflow)(File)
...

2.1. Basic Topics 23

Kotti, Release 1.3.0

How to assign a different workflow to a content type

We are going to use the default workflow for standard content types and a custom workflow for content types providing
the ICustomContent marker interface. All other content types will still use the default workflow. Third party
developers will be able to override our custom workflow without having to touch any line of code (just a .ini
configuration file)

Let’s assume you are starting with a standard Kotti package created with pcreate -s kotti kotti_wf.

Four steps are needed:

1. create a new marker interface ICustomContent,

2. change kotti_wf.resource (replace IDefaultWorkflow with our new ICustomContent),

3. create the new workflow definition and

4. register your workflow definition.

Create a new module kotti_wf/interfaces.py with this code. This is optional but it doesn’t hurt, the impor-
tant thing is to omit the IDefaultWorkflow implementer from kotti_wf.resources:

from zope.interface import Interface

class ICustomContent(Interface):
""" Custom content marker interface """

Change your kotti_wf.resources module like so:

from kotti.resources import Content
from zope.interface import implements

from kotti_wf.interfaces import ICustomContent

class CustomContent(Content):
""" A custom content type. """

implements(ICustomContent)

Here it is, our “custom” workflow definition assigned to our ICustomContent marker interface:

<configure xmlns="http://namespaces.repoze.org/bfg"
xmlns:i18n="http://xml.zope.org/namespaces/i18n"
i18n:domain="Kotti">

<include package="repoze.workflow" file="meta.zcml"/>

<workflow
type="security"
name="custom"
state_attr="state"
initial_state="private"
content_types="kotti_wf.interfaces.ICustomContent"
permission_checker="pyramid.security.has_permission"
>

<state name="private" callback="kotti.workflow.workflow_callback">

24 Chapter 2. Narrative Documentation

Kotti, Release 1.3.0

<key name="title" value="_(u'Private')" />
<key name="order" value="1" />

<key name="inherit" value="0" />
<key name="system.Everyone" value="" />
<key name="role:viewer" value="view" />
<key name="role:editor" value="view add edit delete state_change" />
<key name="role:owner" value="view add edit delete manage state_change" />

</state>

</workflow>

</configure>

Last you have to tell Kotti to register your new custom workflow including our zcml file:

kotti.zcml_includes = kotti_wf:workflow.zcml

Special cases:

• if you change workflow settings on a site with existing CustomContent instances, you need to update the
workflow settings using the kotti-reset-workflow command.

• if you assign a new workflow definition to a content that already provides the IDefaultWorkflow marker
interface (by default all content types except files and images), you will have to create and attach on your
workflow definition an elector function (it is just a function accepting a context and returning True or
False)

2.1.3 Configuration

Contents

• Configuration

– INI File

– Overview of settings

– kotti.secret and kotti.secret2

– Override templates (kotti.asset_overrides)

– Use add-ons

* pyramid.includes

* kotti.available_types

* kotti.populators

* kotti.search_content

– Configure the user interface language

– Configure authentication and authorization

– Sessions

– Caching

2.1. Basic Topics 25

Kotti, Release 1.3.0

– URL normalization

– Local navigation

INI File

Kotti is configured using an INI configuration file. The Installation section explains how to get hold of a sample
configuration file. The [app:kotti] section in it might look like this:

[app:kotti]
use = egg:Kotti
pyramid.reload_templates = true
pyramid.debug_authorization = false
pyramid.debug_notfound = false
pyramid.debug_routematch = false
pyramid.debug_templates = true
pyramid.default_locale_name = en
pyramid.includes = pyramid_debugtoolbar

pyramid_tm
mail.default_sender = yourname@yourhost
sqlalchemy.url = sqlite:///%(here)s/Kotti.db
kotti.site_title = Kotti
kotti.secret = changethis1

Various aspects of your site can be changed right here.

Overview of settings

This table provides an overview of available settings. All these settings must go into the [app:kotti] section of
your Paste Deploy configuration file.

Only the settings in bold letters required. The rest has defaults.

Do take a look at the required settings (in bold) and adjust them in your site’s configuration. A few of the settings are
less important, and sometimes only used by developers, not integrators.

Setting Description
kotti.site_title The title of your site
kotti.secret Secret token used for the initial admin password
kotti.secret2 Secret token used for email password reset token
sqlalchemy.url SQLAlchemy database URL
mail.default_sender Sender address for outgoing email
kotti.asset_overrides Override Kotti’s templates
kotti.authn_policy_factory Component used for authentication
kotti.authz_policy_factory Component used for authorization
kotti.available_types List of active content types
kotti.base_includes List of base Python configuration hooks
kotti.caching_policy_chooser Component for choosing the cache header policy
kotti.configurators List of advanced functions for config
kotti.date_format Date format to use, default: medium
kotti.datetime_format Datetime format to use, default: medium
kotti.depot_mountpoint Configure the mountpoint for the blob storage. See Working with Blob Data in Kotti for details.

Continued on next page

26 Chapter 2. Narrative Documentation

http://www.sqlalchemy.org/docs/core/engines.html#database-urls

Kotti, Release 1.3.0

Table 2.1 – continued from previous page
Setting Description
kotti.depot_replace_wsgi_file_wrapper Replace you WSGI server’s file wrapper with pyramid.response.FileIter.
kotti.depot.*.* Configure the blob storage. See Working with Blob Data in Kotti for details.
kotti.fanstatic.edit_needed List of static resources used for edit interface
kotti.fanstatic.view_needed List of static resources used for public interface
kotti.login_success_callback Override Kotti’s default login_success_callback function
kotti.max_file_size Max size for file uploads, default: 10 (MB)
kotti.modification_date_excludes List of attributes in dotted name notation that should not trigger an update of modification_date on change
kotti.populators List of functions to fill initial database
kotti.request_factory Override Kotti’s default request factory
kotti.reset_password_callback Override Kotti’s default reset_password_callback function
kotti.root_factory Override Kotti’s default Pyramid root factory
kotti.sanitize_on_write Configure Sanitizers to be used on write access to resource objects
kotti.sanitizers Configure available Sanitizers
kotti.search_content Override Kotti’s default search function
kotti.session_factory Component used for sessions
kotti.templates.api Override api object available in templates
kotti.time_format Time format to use, default: medium
kotti.url_normalizer Component used for url normalization
kotti.zcml_includes List of packages to include the ZCML from
mail.host Email host to send from
pyramid.default_locale_name Set the user interface language, default en
pyramid.includes List of Python configuration hooks

kotti.secret and kotti.secret2

The value of kotti.secret will define the initial password of the admin user. Thus, if you define kotti.
secret = mysecret, the admin password will be mysecret. Log in and change the password at any time
through the web interface.

The kotti.secret token is also used for signing browser session cookies. The kotti.secret2 token is used
for signing the password reset token.

Here’s an example:

kotti.secret = myadminspassword
kotti.secret2 = $2a$12$VVpW/i1MA2wUUIUHwY6v8O

Note: Do not use these values in your site

Override templates (kotti.asset_overrides)

In your settings file, set kotti.asset_overrides to a list of asset specifications. This allows you to set up a
directory in your package that will mirror Kotti’s own and that allows you to override Kotti’s templates on a case by
case basis.

As an example, image that we wanted to override Kotti’s master layout template. Inside the Kotti source, the layout
template is located at kotti/templates/view/master.pt. To override this, we would add a directory to our
own package called kotti-overrides and therein put our own version of the template so that the full path to our
own custom template is mypackage/kotti-overrides/templates/view/master.pt.

2.1. Basic Topics 27

https://pyramid.readthedocs.io/en/latest/api/response.html#pyramid.response.FileIter

Kotti, Release 1.3.0

We can then register our kotti-overrides directory by use of the kotti.asset_overrides setting, like so:

kotti.asset_overrides = mypackage:kotti-overrides/

Use add-ons

Add-ons will usually include in their installation instructions which settings one should modify to activate them.
Configuration settings that are used to activate add-ons are:

• pyramid.includes

• kotti.available_types

• kotti.base_includes

• kotti.configurators

pyramid.includes

pyramid.includes defines a list of hooks that will be called when your Kotti app starts up. This gives the
opportunity to third party packages to add registrations to the Pyramid Configurator API in order to configure views
and more.

Here’s an example. Let’s install the kotti_twitter extension and add a Twitter profile widget to the right column of all
pages. First we install the package from PyPI:

bin/pip install kotti_twitter

Then we activate the add-on in our site by editing the pyramid.includes setting in the [app:kotti] section
of our INI file (if a line with pyramid.includes does not exist, add it).

pyramid.includes = kotti_twitter.include_profile_widget

kotti_twitter also asks us to configure the Twitter widget itself, so we add some more lines right where we were:

kotti_twitter.profile_widget.user = dnouri
kotti_twitter.profile_widget.loop = true

The order in which the includes are listed matters. For example, when you add two slots on the right hand side,
the order in which you list them in pyramid.includes will control the order in which they will appear. As an
example, here’s a configuration with which the search widget will be displayed above the profile widget:

pyramid.includes =
kotti_twitter.include_search_widget
kotti_twitter.include_profile_widget

Read more about including packages using ‘pyramid.includes’ in the Pyramid documentation.

kotti.available_types

The kotti.available_types setting defines the list of content types available. The default configuration here
is:

kotti.available_types = kotti.resources.Document kotti.resources.File

28 Chapter 2. Narrative Documentation

http://pypi.python.org/pypi/kotti_twitter
http://readthedocs.org/docs/pyramid/en/1.3-branch/narr/environment.html#including-packages

Kotti, Release 1.3.0

An example that removes File and adds two content types:

kotti.available_types =
kotti.resources.Document
kotti_calendar.resources.Calendar
kotti_calendar.resources.Event

kotti.populators

The default configuration here is:

kotti.populators = kotti.populate.populate

Populators are functions with no arguments that get called on system startup. They may then make automatic changes
to the database (before calling transaction.commit()).

kotti.search_content

Kotti provides a simple search over the content types based on kotti.resources.Content. The default configuration here
is:

kotti.search_content = kotti.views.util.default_search_content

You can provide an own search function in an add-on and register this in your INI file. The return value of the search
function is a list of dictionaries, each representing a search result:

[{'title': 'Title of search result 1',
'description': 'Description of search result 1',
'path': '/path/to/search-result-1'},

{'title': 'Title of search result 2',
'description': 'Description of search result 2',
'path': '/path/to/search-result-2'},

...
]

An add-on that defines an alternative search function is kotti_solr, which provides an integration with the Solr search
engine.

Configure the user interface language

By default, Kotti will display its user interface in English. The default configuration is:

pyramid.default_locale_name = en

You can configure Kotti to serve a German user interface by saying:

pyramid.default_locale_name = de_DE

The list of available languages is here.

2.1. Basic Topics 29

http://pypi.python.org/pypi/kotti_solr
http://lucene.apache.org/solr/
https://github.com/Kotti/Kotti/tree/master/kotti/locale

Kotti, Release 1.3.0

Configure authentication and authorization

You can override the authentication and authorization policy that Kotti uses. By default, Kotti uses these factories:

kotti.authn_policy_factory = kotti.authtkt_factory
kotti.authz_policy_factory = kotti.acl_factory

These settings correspond to pyramid.authentication.AuthTktAuthenticationPolicy and pyra-
mid.authorization.ACLAuthorizationPolicy being used.

Sessions

The kotti.session_factory configuration variable allows the overriding of the default session factory. By
default, Kotti uses pyramid_beaker for sessions.

Caching

You can override Kotti’s default set of cache headers by changing the kotti.views.cache.
caching_policies dictionary, which maps policies to headers. E.g. the Cache Resource entry there
caches all static resources for 32 days. You can also choose which responses match to which caching policy by
overriding Kotti’s default cache policy chooser through the use of the kotti.caching_policy_chooser
configuration variable. The default is:

kotti.caching_policy_chooser = kotti.views.cache.default_caching_policy_chooser

URL normalization

Kotti normalizes document titles to URLs by replacing language specific characters like umlauts or accented char-
acters with its ascii equivalents. You can change this default behavour by setting kotti.url_normalizer.
map_non_ascii_characters configuration variable to False. If you do, Kotti will leave national characters
in URLs.

You may also replace default component used for url normalization by setting kotti.url_normalizer configua-
tion variable.

The default configuration here is:

kotti.url_normalzier = kotti.url_normalizer.url_normalizer
kotti.url_normalizer.map_non_ascii_characters = True

Local navigation

Kotti provides a build in navigation widget, which is disabled by default. To enable the navigation widget add the
following to the pyramid.includes setting:

pyramid.includes = kotti.views.slots.includeme_local_navigation

The add-on kotti_navigation provides also a navigation widget with more features. With this add-on included your
configuration looks like:

pyramid.includes = kotti_navigation.include_navigation_widget

Check the documentation of kotti_navigation for more options.

30 Chapter 2. Narrative Documentation

http://docs.pylonsproject.org/projects/pyramid/dev/api/authentication.html
http://docs.pylonsproject.org/projects/pyramid/dev/api/authorization.html
http://docs.pylonsproject.org/projects/pyramid/dev/api/authorization.html
http://pypi.python.org/pypi/kotti_navigation
http://pypi.python.org/pypi/kotti_navigation

Kotti, Release 1.3.0

2.1.4 Automated tests

Kotti uses pytest, zope.testbrowser and WebTest for automated testing.

Before you can run the tests, you must install Kotti’s ‘testing’ extras. Inside your Kotti checkout directory, do:

bin/python setup.py dev

To then run Kotti’s test suite, do:

bin/py.test

Using Kotti’s test fixtures/funcargs in third party add-ons’ tests

To be able to use all of Kotti’s fixtures and funcargs in your own package’s tests, you only need to “include” them with
a line like this in your conftest.py file:

pytest_plugins = "kotti"

2.1. Basic Topics 31

http://pytest.org
http://pypi.python.org/pypi/zope.testbrowser
http://webtest.pythonpaste.org

Kotti, Release 1.3.0

Available fixtures

Fixture dependencies

allwarnings

app

webtest

config

db_session

depot_tween

dummy_requesteventsworkflow

browser

filedepot

root

mock_filedepotno_filedepots

connection

content

custom_settings

unresolved_settings

settings

setup_app dummy_mailer

kotti.tests.browser(db_session, request, setup_app)
returns an instance of zope.testbrowser. The kotti.testing.user pytest marker (or pytest.mark.user) can be used

32 Chapter 2. Narrative Documentation

Kotti, Release 1.3.0

to pre-authenticate the browser with the given login name: @user(‘admin’).

kotti.tests.config(request, settings)
returns a Pyramid Configurator object initialized with Kotti’s default (test) settings.

kotti.tests.connection(custom_settings)
sets up a SQLAlchemy engine and returns a connection to the database. The connection string used for testing
can be specified via the KOTTI_TEST_DB_STRING environment variable. The custom_settings fixture
is needed to allow users to import their models easily instead of having to override the connection.

kotti.tests.content(connection, settings)
sets up some default content using Kotti’s testing populator.

kotti.tests.custom_settings()
This is a dummy fixture meant to be overriden in add on package’s conftest.py. It can be used to inject
arbitrary settings for third party test suites. The default settings dictionary will be updated with the dictionary
returned by this fixture.

This is also a good place to import your add on’s resources module to have the corresponding tables created
during create_all() in kotti.tests.content().

Result settings

Return type dict

kotti.tests.db_session(config, content, connection, request)
returns a db session object and sets up a db transaction savepoint, which will be rolled back after the test.

kotti.tests.depot_tween(request, config, dummy_request)
Sets up the Depot tween and patches Depot’s set_middleware to suppress exceptions on subsequent calls

kotti.tests.dummy_request(config, request, monkeypatch)
returns a dummy request object after registering it as the currently active request. This is needed when pyra-
mid.threadlocal.get_current_request is used.

kotti.tests.events(config, request)
sets up Kotti’s default event handlers.

kotti.tests.filedepot(db_session, request, depot_tween)
Configures a dbsession integrated mock depot store for depot.manager.DepotManager

kotti.tests.image_asset()
Return an image file

kotti.tests.image_asset2()
Return another image file

kotti.tests.mock_filedepot(request, depot_tween)
Configures a mock depot store for depot.manager.DepotManager

This filedepot is not integrated with dbsession. Can be used in simple, standalone unit tests.

kotti.tests.no_filedepots(db_session, request, depot_tween)
A filedepot fixture to empty and then restore DepotManager configuration

kotti.tests.root(db_session)
returns Kotti’s ‘root’ node.

kotti.tests.workflow(config)
loads and activates Kotti’s default workflow rules.

2.1. Basic Topics 33

https://depot.readthedocs.io/en/latest/api.html#depot.manager.DepotManager
https://depot.readthedocs.io/en/latest/api.html#depot.manager.DepotManager

Kotti, Release 1.3.0

Continuous Integration

Kotti itself is tested against Python versions 2.6 and 2.7 as well as SQLite, mySQL and PostgreSQL (in every possible
combination of those) on every commit (and pull request) via the excellent GitHub / Travis CI hook.

If you want your add-on packages’ to be tested the same way with additional testing against multiple versions of
Kotti (including the current master), you can add a .travis.yml file to your repo that looks similar to this: https:
//raw.github.com/Kotti/kotti_media/master/.travis.yml.

The packages under http://kottipackages.xo7.de/ include all Kotti versions released on PyPI (synced every night at
00:15 CET) and a package built from the current master on GitHub (created every 15 minutes).

2.1.5 Translations

You can find the list of Kotti’s translations here. Kotti uses GNU gettext and .po files for internationalization.

You can set the pyramid.default_locale_name in your configuration file to choose which language Kotti
should serve the user interface (see Configure the user interface language).

Extraction of new messages into the .pot file, updating the existing .po files and compiling them to .mo files is all
done with subsequent runs of the included i18n.sh script:

./i18n.sh

To add a new translations run:

./i18n.sh <2 letter code of the new language>

2.1.6 Deployment

Kotti deployment is not different from deploying any other WSGI app. You have a bunch of options on multiple layers:
OS, RDBMS, Webserver, etc.

This document assumes the following Stack:

OS Ubuntu 12.04

Webserver Nginx

RDBMS PostgreSQL

Kotti

latest version available on PyPI
installed in its own virtualenv
deployed in an uWSGI application container

Manual installation

Install OS packages:

apt-get install build-essential libpq-dev python python-dev python-virtualenv

Install PostgreSQL:

apt-get install postgresql-9.1

34 Chapter 2. Narrative Documentation

https://github.com/
https://travis-ci.org/
https://raw.github.com/Kotti/kotti_media/master/.travis.yml
https://raw.github.com/Kotti/kotti_media/master/.travis.yml
http://kottipackages.xo7.de/
https://github.com/Kotti/Kotti/tree/master/kotti/locale
http://www.gnu.org/software/gettext/

Kotti, Release 1.3.0

Create a DB user:

sudo -u postgres createuser -P

Enter name of role to add: kotti
Enter password for new role:
Enter it again:
Shall the new role be a superuser? (y/n) n
Shall the new role be allowed to create databases? (y/n) n
Shall the new role be allowed to create more new roles? (y/n) n

Create a DB:

sudo -u postgres createdb -O kotti kotti

Install Nginx:

apt-get install nginx-full

Create a config file in /etc/nginx/sites-available/<your_domain>.conf:

server {
listen 80;
server_name <your_domain>;
location / {

include uwsgi_params;
uwsgi_pass unix:/home/kotti/<your_domain>.sock;

}
}

Create a user for your Kotti application:

useradd -m kotti

Create a virtualenv in the new user’s home directory:

sudo -u kotti virtualenv --no-site-packages /home/kotti

Install Kotti and its dependencies in the virtualenv:

sudo -u kotti /home/kotti/bin/pip install -r https://raw.github.com/Kotti/Kotti/0.8a1/
→˓requirements.txt
sudo -u kotti /home/kotti/bin/pip install Kotti==0.8a1

Create an ini file in /home/kotti/kotti.ini:

[app:main]
use = egg:kotti
pyramid.includes = pyramid_tm
sqlalchemy.url = postgresql://kotti:<db_password>@127.0.0.1:5432/kotti
kotti.configurators = kotti_tinymce.kotti_configure
kotti.site_title = Kotti deployed with fabric
kotti.secret = qwerty
filter-with = fanstatic

[filter:fanstatic]
use = egg:fanstatic#fanstatic

2.1. Basic Topics 35

Kotti, Release 1.3.0

[alembic]
script_location = kotti:alembic

[uwsgi]
socket = /home/kotti/<your_domain>.sock
master = true
chmod-socket = 666
processes = 2
lazy = true # needed if want processes > 1
lazy-apps = true

Install Supervisor:

apt-get install supervisor

Create a supervisor config for Kotti / uWSGI in /etc/supervisor/conf.d/kotti.conf:

[program:kotti]
autorestart=true
command=uwsgi_python --ini-paste /home/kotti/kotti.ini
directory=/home/kotti
redirect_stderr=true

Reload the supervisor config:

supervisorctl reload

That’s all. Your Kotti deployment should now happily serve pages.

Fabfile

WARNING: this is only an example. Do not run this unmodified against a host that is intended to do anything
else or things WILL break!

For your convenience there is a fabric file that automates all of the above. If you don’t know what fabric is and how it
works read their documentation first.

On your local machine make a separate virtualenv first and install the fabric and fabtools packages into that
virtualenv:

mkvirtualenv kotti_deployment && cdvirtualenv
pip install fabric fabtools

Get the fabfile:

wget https://gist.github.com/gists/4079191/download

Read and modify the file to fit your needs. Then run it against your server:

fab install_all

You’re done. Everything is installed and configured to serve Kotti under http://kotti.yourdomain.com/

36 Chapter 2. Narrative Documentation

http://docs.fabfile.org/
http://kotti.yourdomain.com/

Kotti, Release 1.3.0

2.2 Advanced Topics

2.2.1 Using Kotti as a library

Instead of taking control of your application, and delegating to your extension, you may use Kotti in applications
where you define the main entry point yourself.

You’ll still need to call kotti.base_configure from your code to set up essential parts of Kotti:

default_settings = {
'pyramid.includes': 'myapp myapp.views',
'kotti.authn_policy_factory': 'myapp.authn_policy_factory',
'kotti.base_includes': (

'kotti kotti.views kotti.views.login kotti.views.users'),
'kotti.use_tables': 'orders principals',
'kotti.populators': 'myapp.resources.populate',
'kotti.principals_factory': 'myapp.security.Principals',
'kotti.root_factory': 'myapp.resources.Root',
'kotti.site_title': 'Myapp',
}

def main(global_config, **settings):
settings2 = default_settings.copy()
settings2.update(settings)
config = kotti.base_configure(global_config, **settings2)
engine = sqlalchemy.engine_from_config(config.registry.settings, 'sqlalchemy.')
kotti.resources.initialize_sql(engine)
return config.make_wsgi_app()

The above example configures Kotti so that its user database and security subsystem are set up. Only a handful of tables
(kotti.use_tables) and a handful of Kotti’s views (kotti.base_includes) are activated. Furthermore, our
application is configured to use a custom root factory (root node) and a custom populator.

In your PasteDeploy configuration you’d then wire up your app directly, maybe like this:

[app:myapp]
use = egg:myapp
pyramid.includes = pyramid_tm
mail.default_sender = yourname@yourhost
sqlalchemy.url = sqlite:///%(here)s/myapp.db
kotti.secret = secret

[filter:fanstatic]
use = egg:fanstatic#fanstatic

[pipeline:main]
pipeline =

fanstatic
myapp

2.2.2 Close your site to anonymous users

This recipe describes how to configure Kotti to require users to log in before they can view any of your site’s pages.

To achieve this, we’ll have to set our site’s ACL. A custom populator will help us do that (see kotti.populators).

2.2. Advanced Topics 37

Kotti, Release 1.3.0

Remember that the default site ACL gives view privileges to every user, including anonymous (see Security). We’ll
thus have to restrict the view permission to the viewer role:

from kotti.resources import get_root

SITE_ACL = [
(u'Allow', u'role:viewer', [u'view']),
(u'Allow', u'role:editor', [u'view', u'add', u'edit']),

]

def populate():
site = get_root()
site.__acl__ = SITE_ACL

2.2.3 Default views in Kotti

In Kotti every Content node has a default_view attribute. This allows to have different views for any instance
of a content type without having to append the view name to the URL.

You can also provide additional views for the default content types in your third party add on. To make them show up
in the default view selector in the UI you have to append a (view_name, view_title) tuple to the type_info
attribute of the respective content class via its class method add_selectable_default_view(name,
title).

E.g. the kotti_media add on provides a media_folder_view for the Document content type that lists all
‘media type’ children of a Document with their title and a media player.

Registration is done like this:

from kotti.resources import Document
from kotti_media import _

def includeme(config):

Document.type_info.add_selectable_default_view("media_folder_view",
_("Media Folder"))

2.2.4 Adding links and actions to the edit interface

This document covers how to customize the available links and actions of the edit interface (the extra tabs and menus
that appear after you log in).

The basic building block is the link, kotti.util.Link. Instantiate it as:

link = Link('name', _(u'Title'))

The name refers to a view name available on the context.

There’s also:

• kotti.util.LinkParent, which allows grouping of links

• kotti.util.LinkRenderer, which, instead of generating a simple link, allows you to customize how it’s
rendered (you can insert anything there, even another submenu based on a LinkParent).

• kotti.util.ActionButton, very similar to a simple link, but generates a button instead.

38 Chapter 2. Narrative Documentation

Kotti, Release 1.3.0

Adding a new option to the Administration menu

Adding a new link as an option in the Administration menu, in the Site Setup section is easy. In your
kotti_configure function, add:

from kotti.util import Link
from kotti.views.site_setup import CONTROL_PANEL_LINKS

def kotti_configure(settings):
link = Link('name', _(u'Title'))
CONTROL_PANEL_LINKS.append(link)

Make a new section in the actions menu

The Set default view section looks really nice. To add your own separated section in the Action menu and make that
available to all content types:

from kotti.util import LinkRenderer
from kotti.resources import default_actions

def kotti_configure(settings):
default_actions.append(LinkRenderer("my-custom-submenu"))

So far we’ve added a LinkRenderer to the default_actions which are used by all content inheriting
Content. This LinkRenderer will render a view and insert its result in the menu.

@view_config(
name="my-custom-submenu", permission="edit",
renderer="mypackage:templates/edit/my-custom-submenu.pt")

def my_custom_submenu(context, request):
return {}

And the template:

<tal:menu i18n:domain="mypackage">
<li class="divider">
<li role="presentation" class="dropdown-header" i18n:translate="">

My own actions

<a i18n:translate="" href="${request.resource_url(context, 'someview')}">
View title here

</tal:menu

2.2.5 Events

Kotti has a builtin event system that is based on the Publish-subscribe pattern.

The basic concept is that whenever a specific event occurs, all handler functions that have subscribed to that event will
be executed.

There are two different types of events:

2.2. Advanced Topics 39

http://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

Kotti, Release 1.3.0

• Object events. . .

. . . relate to a specific object. In most cases this object will be a node from the content tree (i.e. the same as
context in view callables).

Events of type ObjectEvent have object and request attributes. event.request may be None
when no request is available.

• Generic events. . .

. . . don’t have that kind of context.

Kotti supports such events but doesn’t use them anywhere.

The event types provided by Kotti (see API docs for kotti.events) may be extended with your own event types.
Subclass ObjectEvent (for object events) or object (for generic events) and follow the subscription instructions
below, as you would for Kotti-provided events.

Subscribing to Events

To add a handler for a specific event type, you must implement a function which takes a single argument event and
associate that to the appropriate event type by decorating it with the subscribe decorator.

That decorator takes up to two arguments that restrict the handler execution to specific events only. When called
without arguments the handler is subscribed to all events:

from kotti.events import subscribe

@subscribe()
def all_events_handler(event):

print event

To subscribe to a specific event type, supply the desired type as the first argument to subscribe:

from kotti.events import ObjectInsert
from kotti.events import subscribe

@subscribe(ObjectInsert)
def document_insert_handler(event):

print event.object, event.request

You can further narrow the subscription by adding a second argument that limits the subscription to specific object
types. For example, to subscribe to ObjectDelete events of Document types, write:

from kotti.events import ObjectDelete
from kotti.events import subscribe
from kotti.resources import Document

@subscribe(ObjectDelete, Document)
def document_delete_handler(event):

print event.object, event.request

Triggering Event Handler Execution

Notifying listeners of an event is as simple as calling notify():

from kotti.events import notify
notify(MyFunnyEvent())

40 Chapter 2. Narrative Documentation

Kotti, Release 1.3.0

Listeners are generally called in the order in which they are registered.

2.2.6 Use a different template for the front page (or any other page)

This recipe describes a way to override the template used for a specific object in your database. Imagine you want
your front page to stand out from the rest of your site and use a unique layout.

We can set the default view for any content object by settings its default_view attribute, which is usually None.
Inside our own populator (see kotti.populators), we write this:

from kotti.resources import get_root

def populate():
site = get_root()
site.default_view = 'front-page'

What’s left is to register the front-page view:

def includeme(config):
config.add_view(

name='front-page',
renderer='myapp:templates/front-page.pt',

)

Note: If you want to override instead the template of all pages, not only that of a particluar page, you should look at
the kotti.override_assets setting (Override templates (kotti.asset_overrides)).

2.2.7 Images

All image related functions were moved to kotti_image as of Kotti 1.3.0.

2.2.8 Working with Blob Data in Kotti

Kotti provides flexible mechanisms for storing and serving blob data by with the help of Depot.

Contents

• Working with Blob Data in Kotti

– How File-like Content is stored

– Configuration

* Mountpoint

– WSGI File Wrapper

* Storages

– How File-like Content is served

* Method 1

* Method 2

2.2. Advanced Topics 41

https://pypi.python.org/pypi/kotti_image
https://depot.readthedocs.io/en/latest/

Kotti, Release 1.3.0

* Comparison

– Developing (with) File-like Content

* Add a Blob Field to your Model

* Reading Blob Data

* Testing UploadedFileField Columns

* Inheritance Issues with UploadedFileField Columns

– Migrating data between two different storages

How File-like Content is stored

Both File and Image store their data in depot.fields.sqlalchemy.UploadedFileField and they will
offload their blob data to the configured depot storage. Working together with Depot configured storages means it is
possible to store blob data in a variety of ways: filesystem, GridFS, Amazon storage, etc.

• depot.io.local.LocalFileStorage

• depot.io.awss3.S3Storage

• depot.io.gridfs.GridFSStorage

• etc.

By default Kotti will store its blob data in the configured SQL database, using kotti.filedepot.
DBFileStorage storage, but you can configure your own preferred way of storing your blob data. The benefit
of storing files in kotti.filedepot.DBFileStorage is having all content in a single place (the DB) which
makes backups, exporting and importing of your site’s data easy, as long as you don’t have too many or too large files.
The downsides of this approach appear when your database server resides on a different host (network performance
becomes a greater issue) or your DB dumps become too large to be handled efficiently.

Configuration

Mountpoint

Kotti provides a Pyramid tween (pyramid.registering_tweens) that is responsible for the actual serving of blob data.
It does pretty much the same as depot.middleware.DepotMiddleware, but is better integrated into Pyramid
and therefore Kotti.

This tween “intercepts” all requests before they reach the main application (Kotti). If it’s a request for blob data
(identified by the configured kotti.depot_mountpoint), it will be served by the tween itself (or redirected to
an external storage like S3), otherwise it will be “forwarded” to the main application. This mountpoint is also used to
generate URLs to blobs. The default value for kotti.depot_mountpoint is /depot:

kotti.depot_mountpoint = /depot

WSGI File Wrapper

In case you have issues serving files with your WSGI server, your can try to set kotti.
depot_replace_wsgi_file_wrapper = true. This forces Kotti to use pyramid.response.
FileIter instead of the one provided by your WSGI server.

42 Chapter 2. Narrative Documentation

https://depot.readthedocs.io/en/latest/api.html#depot.fields.sqlalchemy.UploadedFileField
https://depot.readthedocs.io/en/latest/
https://depot.readthedocs.io/en/latest/api.html#depot.io.local.LocalFileStorage
https://depot.readthedocs.io/en/latest/api.html#depot.io.awss3.S3Storage
https://depot.readthedocs.io/en/latest/api.html#depot.io.gridfs.GridFSStorage
https://depot.readthedocs.io/en/latest/api.html#depot.middleware.DepotMiddleware
https://pyramid.readthedocs.io/en/latest/api/response.html#pyramid.response.FileIter
https://pyramid.readthedocs.io/en/latest/api/response.html#pyramid.response.FileIter

Kotti, Release 1.3.0

Storages

While Depot allows storing data in any of the configured filestorages, at this time there’s no mechanism in Kotti to
select, at runtime, the depot where new data will be saved. Instead, Kotti will store new files only in the configured
default store. If, for example, you add a new depot and make that the default, you should leave the old depot
configured so that Kotti will continue serving files uploaded there.

By default, Kotti comes configured with a db-based filestorage:

kotti.depot.0.name = dbfiles
kotti.depot.0.backend = kotti.filedepot.DBFileStorage

To configure a depot, several kotti.depot.*.* lines need to be added. The number in the first position is used
to group backend configuration and to order the file storages in the configuration of Depot. The depot configured with
number 0 will be the default depot, where all new blob data will be saved. There are 2 options that are required for
every storage configuration: name and backend. The name is a unique string that will be used to identify the path
of saved files (it is recorded with each blob info), so once configured for a particular storage, it should never change.
The backend should point to a dotted path for the storage class. Any further parameters for a particular backend will
be passed as keyword arguments to the backend class.

See this example, in which we store, by default, files in /var/local/files/ using the depot.io.local.
LocalFileStorage:

kotti.depot.0.name = localfs
kotti.depot.0.backend = depot.io.local.LocalFileStorage
kotti.depot.0.storage_path = /var/local/files
kotti.depot.1.name = dbfiles
kotti.depot.1.backend = kotti.filedepot.DBFileStorage

Notice that we kept the dbfiles storage, but we moved it to position 1. No blob data will be saved there anymore,
but existing files in that storage will continue to be available from there.

How File-like Content is served

Starting with Kotti 1.3.0, file-like content can be served in two different ways. Let’s look at an example to compare
them.

Say we have a kotti.resources.File object in our resource tree, located at /foo/bar/file.

Method 1

In the default views this file is served under the URL http://localhost/foo/bar/file/
attachment-view. This URL can be created like this:

>>> from kotti.resources import File
>>> file = File.query.filter(File.name == 'file').one()
>>> request.resource_url(file, 'attachment-view')
'http://localhost/foo/bar/file/attachment-view'

When this URL is requested, a kotti.filedepot.StoredFileResponse is returned:

>>> request.uploaded_file_response(file.data)
<StoredFileResponse at 0x10c8d22d0 200 OK>

The request is processed in the same way as for every other type of content in Kotti. It goes through the full traversal
and view lookup machinery with full permission checks.

2.2. Advanced Topics 43

https://depot.readthedocs.io/en/latest/
https://depot.readthedocs.io/en/latest/
https://depot.readthedocs.io/en/latest/api.html#depot.io.local.LocalFileStorage
https://depot.readthedocs.io/en/latest/api.html#depot.io.local.LocalFileStorage

Kotti, Release 1.3.0

Method 2

Often these permission checks do not need to be enforced strictly. For such cases Kotti provides a “shortcut” in form
of a Pyramid tween, that directly processes all requests under a certain path befor they even reach Kotti. This means:
no traversal, no view lookup, no permission checks. The URL for this method can be created very similarily:

>>> request.uploaded_file_url(file.data, 'attachment')
'http://localhost//depot/dbfiles/68f31e97-a7f9-11e5-be07-c82a1403e6a7/download'

Comparison

Obviously method 2 is a lot faster than method 1 - typically at least by the factor of 3.

If you take a look at the callgraphs, you’ll understand where this difference comes from:

Method 1 Method 2

The difference will be even more drastic, when you set up proper HTTP caching. All responses for method 2 can be
cached forever, because the URL will change when the file’s content changes.

Developing (with) File-like Content

Add a Blob Field to your Model

Adding a blob data attribute to your models can be as simple as:

from depot.fields.sqlalchemy import UploadedFileField
from kotti.resources import Content

class Person(Content):
avatar = UploadedFileField()

While you can directly assign a bytes value to the avatar column, the UploadedFileField column type
works best when you assign a cgi.FieldStorage instance as value:

from StringIO import StringIO
from kotti.util import _to_fieldstorage

content = '...'
data = {

'fp': StringIO(content),
'filename': 'avatar.png',
'mimetype': 'image/png',
'size': len(content),
}

person = Person()
person.avatar = _to_fieldstorage(**data)

Note that the data dictionary described here has the same format as the deserialized value of a deform.widget.
FileUploadWidget. See kotti.views.edit.content.FileAddForm and kotti.views.edit.
content.FileEditForm for a full example of how to add or edit a model with a blob field.

44 Chapter 2. Narrative Documentation

../../_static/callgraph-served-by-kotti.svg
../../_static/callgraph-served-by-tween.svg

Kotti, Release 1.3.0

Reading Blob Data

If you try directly to read data from an UploadedFileField you’ll get a depot.fields.upload.
UploadedFile instance, which offers a dictionary-like interface to the stored file metadata and direct access to
a stream with the stored file through the file attribute:

person = DBSession.query(Person).get(1)
blob = person.avatar.file.read()

You should never write to the file stream directly. Instead, you should assign a new value to the
UploadedFileField column, as described in the previous section.

Testing UploadedFileField Columns

Because depot.manager.DepotManager acts as a singleton, special care needs to be taken when testing features
that involve saving data into UploadedFileField columns.

UploadedFileField columns require having at least one depot file storage configured. You can use a fixture
called filedepot to have a mock file storage available for your tests.

If you’re developing new depot file storages you should use the no_filedepots fixture, which resets the configured
depots for the test run and restores the default depots back, as a teardown.

Inheritance Issues with UploadedFileField Columns

You should be aware that, presently, subclassing a model with an UploadedFileField column doesn’t work
properly. As a workaround, add a __declare_last__ classmethod in your superclass model, similar to the one
below, where we’re fixing the data column of the File class.

from depot.fields.sqlalchemy import _SQLAMutationTracker

class File(Content):

data = UploadedFileField()

@classmethod
def __declare_last__(cls):

event.listen(cls.data, 'set', _SQLAMutationTracker._field_set, retval=True)

Migrating data between two different storages

Kotti provides a script that can migrate blob data from one configured stored to another and update the saved fields
with the new locations. It is not needed to do this if you just want to add a new torage, or replace the default one, but
you can use it if you’d like to consolidate the blob data in one place only. You can invoke the script with:

kotti-migrate-storage <config_uri> --from-storage <name> --to-storage <name>

The storage names are those assigned in the configuration file designated in <config_uri>. For example, let’s
assume you’ve started a website that has the default blob storage, the DBFileStorage named dbfiles. You’d like to
move all the existing blob data to a depot.io.local.LocalFileStorage storage and make that the default.
First, add the LocalFileStorage depot, make it the default and place the old DBFileStorage in position 1::

2.2. Advanced Topics 45

https://depot.readthedocs.io/en/latest/api.html#depot.fields.upload.UploadedFile
https://depot.readthedocs.io/en/latest/api.html#depot.fields.upload.UploadedFile
https://depot.readthedocs.io/en/latest/api.html#depot.manager.DepotManager
https://depot.readthedocs.io/en/latest/api.html#depot.io.local.LocalFileStorage

Kotti, Release 1.3.0

kotti.depot.0.backend = depot.io.local.LocalFileStorage
kotti.depot.0.name = localfs
kotti.depot.0.storage_path = /var/local/files
kotti.depot.1.backend = kotti.filedepot.DBFileStorage
kotti.depot.1.name = dbfiles

Now you can invoke the migration with::

kotti-migrate-storage <config_uri> --from-storage dbfiles --to-storage localfs

As always when dealing with migrations, make sure you backup your data first!

2.2.9 Static resource management

In the default settings Kotti uses Fanstatic to manage its static resources (i.e. CSS, JS, etc.). This is accomplished by
a WSGI pipeline:

[app:kotti]
use = egg:kotti

[filter:fanstatic]
use = egg:fanstatic#fanstatic

[pipeline:main]
pipeline =

fanstatic
kotti

[server:main]
use = egg:waitress#main
host = 127.0.0.1
port = 5000

Defining resources in third party addons

Defining your own resources and have them rendered in the pages produced by Kotti is also easy. You just need
to define resource objects (as described in the corresponding Fanstatic documentation) and add them to either
edit_needed or view_needed in kotti.fanstatic:

from fanstatic import Library
from fanstatic import Resource
from kotti.fanstatic import edit_needed
from kotti.fanstatic import view_needed

my_library = Library('my_package', 'resources')
my_resource = Resource(my_library, "my.js")

def includeme(config):
add to edit_needed if the resource is needed in edit views
edit_needed.add(my_resource)
add to view_needed if the resource is needed in edit views
view_needed.add(my_resource)

Don’t forget to add an entry_point to your package’s setup.py:

46 Chapter 2. Narrative Documentation

http://www.fanstatic.org/
https://fanstatic.readthedocs.io/en/latest/library.html

Kotti, Release 1.3.0

entry_points={
'fanstatic.libraries': [

'foo = my_package:my_library',
],

},

Fanstatic has many more useful options, such as being able to define additional minified resources for deployment.
Please consult Fanstatic’s documentation for a complete list of options.

Overriding Kotti’s default definitions

You can override the resources to be included in the configuration file.

The defaults are

[app:kotti]

kotti.fanstatic.edit_needed = kotti.fanstatic.edit_needed
kotti.fanstatic.view_needed = kotti.fanstatic.view_needed

which ist actually a shortcut for

[app:kotti]

kotti.fanstatic.edit_needed =
kotti.fanstatic.edit_needed_js
kotti.fanstatic.edit_needed_css

kotti.fanstatic.view_needed =
kotti.fanstatic.view_needed_js
kotti.fanstatic.view_needed_css

You may add as many kotti.fanstatic.NeededGroup, fanstatic.Group or fanstatic.Resource
(or actually anything that provides a .need() method) objects in dotted notation as you want.

Say you want to completely abandon Kotti’s CSS resources (and use your own for both view and edit views) but use
Kotti’s JS resources plus an additional JS resource defined within your app (only in edit views). Your configuration
file might look like this:

[app:kotti]

kotti.fanstatic.edit_needed =
kotti.fanstatic.edit_needed_js
myapp.fanstatic.js_resource
myapp.fanstatic.css_resource

kotti.fanstatic.view_needed =
kotti.fanstatic.view_needed_js
myapp.fanstatic.css_resource

Using Kotti without Fanstatic

To handle resources yourself, you can easily and completely turn off fanstatic:

2.2. Advanced Topics 47

https://fanstatic.readthedocs.io/

Kotti, Release 1.3.0

[app:main]
use = egg:kotti

[server:main]
use = egg:waitress#main
host = 127.0.0.1
port = 5000

2.2.10 Understanding Kotti’s startup phase

1. When a Kotti application is started the kotti.main() function is called by the WSGI server and is passed a
settings dictionary that contains all key / value pairs from the [app:kotti] section of the *.ini file.

2. The settings dictionary is passed to kotti.base_configure(). This is where the main work happens:

(a) Every key in kotti.conf_defaults that is not in the settings dictionary (i.e. that is not in the .ini file)
is copied to the settings dictionary, together with the default value for that key.

(b) Add-on initializations: all functions that are listed in the kotti.configurators parameter are re-
solved and called.

(c) pyramid.includes are removed from the settings dictionary for later processing, i.e. after
kotti.base_includes.

(d) A class:pyramid.config.Configurator is instanciated with the remaining settings.

(e) The kotti.base_includes (containing various Kotti subsystems, such as kotti.events,
kotti.views, etc.) are passed to config.include.

(f) The pyramid.includes that were removed from the settings dictionary in step 2.3 are processed.

(g) The kotti.zcml_includes are processed.

3. The SQLAlchemy engine is created with the connection URL that is defined in the sqlalchemy.url parameter in
the .ini file.

4. The fully configured WSGI application is returned to the WSGI server and is ready to process requests.

2.2.11 Sanitizers

Kotti provides a mechanism to sanitize arbitrary strings.

You can configure available sanitizers via kotti.sanitizers. This setting takes a list of strings, with each
specifying a name:callable pair. name is the name under which this sanitizer is registered. callable is a
dotted path to a function taking an unsanitized string and returning a sanitized version of it.

The default configuration is:

kotti.sanitizers =
xss_protection:kotti.sanitizers.xss_protection
minimal_html:kotti.sanitizers.minimal_html
no_html:kotti.sanitizers.no_html

For thorough explaination of the included sanitizers see kotti.sanitizers.

48 Chapter 2. Narrative Documentation

Kotti, Release 1.3.0

Explicit sanitization

You can explicitly use any configured sanitizer like this:

from kotti.sanitizers import sanitize

sanitzed = sanitize(unsanitized, 'xss_protection')

The sanitize function is also available as a method of the kotti.views.util.TemplateAPI. This is just a
convenience wrapper to ease usage in templates:

${api.sanitize(context.foo, 'minimal_html')}

Sanitize on write (implicit sanitization)

The second setting related to sanitization is kotti.sanitize_on_write. It defines, for the specified resource
classes, the attributes that are sanitized and the sanitizers that will be used when the attributes are mutated and flushed.

This setting takes a list of dotted_path:sanitizer_name(s) pairs. dotted_path is a dotted path
to a resource class attribute that will be sanitized implicitly with the respective sanitizer(s) upon write access.
sanitizer_name(s) is a comma separated list of available sanitizer names as configured above.

Kotti will setup listeners for the kotti.events.ObjectInsert and kotti.events.ObjectUpdate
events for the given classes and attach a function that filters the respective attributes with the specified sanitizer.

This means that any write access to configured attributes through your application (also within correctly setup com-
mand line scripts) will be sanitized implicitly.

The default configuration is:

kotti.sanitize_on_write =
kotti.resources.Document.body:xss_protection
kotti.resources.Content.title:no_html

You can also use multiple sanitizers:

kotti.sanitize_on_write =
kotti.resources.Document.body:xss_protection,some_other_sanitizer

Implementing a custom sanitizer

A sanitizer is just a function that takes and returns a string. It can be as simple as:

def no_dogs_allowed(html):
return html.replace('dogs', 'cats')

no_dogs_allowed('<p>I love dogs.</p>')
... '<p>I love cats.</p>'

You can also look at kotti.sanitizers for examples.

2.2. Advanced Topics 49

Kotti, Release 1.3.0

50 Chapter 2. Narrative Documentation

CHAPTER 3

API

3.1 API Documentation

kotti.includeme(config)
Pyramid includeme hook.

Parameters config (pyramid.config.Configurator) – app config

3.1.1 kotti.events

This module includes a simple events system that allows users to subscribe to specific events, and more particularly to
object events of specific object types.

See also: Events.

51

https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator

Kotti, Release 1.3.0

Inheritance Diagram

collections.OrderedDict

kotti.events.DispatcherDict

collections.defaultdict

kotti.events.Dispatcher kotti.events.ObjectEventDispatcher

kotti.events.ObjectAfterDelete

kotti.events.ObjectEvent

kotti.events.ObjectDelete kotti.events.ObjectInsert kotti.events.ObjectUpdate kotti.events.UserDeleted

kotti.events.subscribe

class kotti.events.ObjectEvent(obj, request=None)
Event related to an object.

class kotti.events.ObjectInsert(obj, request=None)
This event is emitted when an object is inserted into the DB.

class kotti.events.ObjectUpdate(obj, request=None)
This event is emitted when an object in the DB is updated.

class kotti.events.ObjectDelete(obj, request=None)
This event is emitted when an object is deleted from the DB.

class kotti.events.ObjectAfterDelete(obj, request=None)
This event is emitted after an object has been deleted from the DB.

Deprecated since version 0.9.

class kotti.events.UserDeleted(obj, request=None)
This event is emitted when an user object is deleted from the DB.

class kotti.events.DispatcherDict(*args, **kwargs)
Base class for dispatchers

class kotti.events.Dispatcher(*args, **kwargs)
Dispatches based on event type.

>>> class BaseEvent(object): pass
>>> class SubEvent(BaseEvent): pass
>>> class UnrelatedEvent(object): pass
>>> def base_listener(event):
... print('Called base listener')
>>> def sub_listener(event):

52 Chapter 3. API

Kotti, Release 1.3.0

... print('Called sub listener')
>>> def unrelated_listener(event):
... print('Called unrelated listener')
... return 1

>>> dispatcher = Dispatcher()
>>> dispatcher[BaseEvent].append(base_listener)
>>> dispatcher[SubEvent].append(sub_listener)
>>> dispatcher[UnrelatedEvent].append(unrelated_listener)

>>> dispatcher(BaseEvent())
Called base listener
[None]
>>> dispatcher(SubEvent())
Called base listener
Called sub listener
[None, None]
>>> dispatcher(UnrelatedEvent())
Called unrelated listener
[1]

class kotti.events.ObjectEventDispatcher(*args, **kwargs)
Dispatches based on both event type and object type.

>>> class BaseObject(object): pass
>>> class SubObject(BaseObject): pass
>>> def base_listener(event):
... return 'base'
>>> def subobj_insert_listener(event):
... return 'sub'
>>> def all_listener(event):
... return 'all'

>>> dispatcher = ObjectEventDispatcher()
>>> dispatcher[(ObjectEvent, BaseObject)].append(base_listener)
>>> dispatcher[(ObjectInsert, SubObject)].append(subobj_insert_listener)
>>> dispatcher[(ObjectEvent, None)].append(all_listener)

>>> dispatcher(ObjectEvent(BaseObject()))
['base', 'all']
>>> dispatcher(ObjectInsert(BaseObject()))
['base', 'all']
>>> dispatcher(ObjectEvent(SubObject()))
['base', 'all']
>>> dispatcher(ObjectInsert(SubObject()))
['base', 'sub', 'all']

kotti.events.set_owner(event)
Set owner of the object that triggered the event.

Parameters event (ObjectInsert) – event that trigerred this handler.

kotti.events.set_creation_date(event)
Set creation_date of the object that triggered the event.

Parameters event (ObjectInsert) – event that trigerred this handler.

3.1. API Documentation 53

Kotti, Release 1.3.0

kotti.events.set_modification_date(event)
Update modification_date of the object that triggered the event.

Parameters event (ObjectUpdate) – event that trigerred this handler.

kotti.events.delete_orphaned_tags(event)
Delete Tag instances / records when they are not associated with any content.

Parameters event (ObjectAfterDelete) – event that trigerred this handler.

kotti.events.cleanup_user_groups(event)
Remove a deleted group from the groups of a user/group and remove all local group entries of it.

Parameters event (UserDeleted) – event that trigerred this handler.

kotti.events.reset_content_owner(event)
Reset the owner of the content from the deleted owner.

Parameters event (UserDeleted) – event that trigerred this handler.

class kotti.events.subscribe(evttype=<type ’object’>, objtype=None)
Function decorator to attach the decorated function as a handler for a Kotti event. Example:

from kotti.events import ObjectInsert
from kotti.events import subscribe
from kotti.resources import Document

@subscribe()
def on_all_events(event):

this will be executed on *every* event
print "Some kind of event occured"

@subscribe(ObjectInsert)
def on_insert(event):

this will be executed on every object insert
context = event.object
request = event.request
print "Object insert"

@subscribe(ObjectInsert, Document)
def on_document_insert(event):

this will only be executed on object inserts if the object is
is an instance of Document
context = event.object
request = event.request
print "Document insert"

kotti.events.wire_sqlalchemy()
Connect SQLAlchemy events to their respective handler function (that fires the corresponding Kotti event).

kotti.events.includeme(config)
Pyramid includeme hook.

Parameters config (pyramid.config.Configurator) – app config

3.1.2 kotti.fanstatic

class kotti.fanstatic.NeededGroup(resources=None)
A collection of fanstatic resources that supports dynamic appending of resources after initialization

54 Chapter 3. API

https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator

Kotti, Release 1.3.0

add(resource)
resource may be a:

• fanstatic.Resource object or

• fanstatic.Group object

3.1.3 kotti.interfaces

interface kotti.interfaces.INode
Extends: pyramid.interfaces.ILocation

Marker interface for all nodes (and subclasses)

interface kotti.interfaces.IContent
Extends: kotti.interfaces.INode

Marker interface for all nodes of type Content (and subclasses thereof)

interface kotti.interfaces.IDocument
Extends: kotti.interfaces.IContent

Marker interface for all nodes of type Document (and subclasses thereof)

interface kotti.interfaces.IFile
Extends: kotti.interfaces.IContent

Marker interface for all nodes of type File (and subclasses thereof)

interface kotti.interfaces.IDefaultWorkflow
Marker interface for content classes that want to use the default workflow

interface kotti.interfaces.INavigationRoot
Marker interface for content nodes / classes that want to be the root for the navigation.

Considering a content tree like this:

- /a
- /a/a
- /a/b (provides INavigationRoot)

- /a/b/a
- /a/b/b
- /a/b/c

- a/c

The root item for the navigation will be ``/a/b`` for everey context in
or below ``/a/b`` and ``/a`` for every other item.

3.1.4 kotti.message

kotti.message.validate_token(user, token, valid_hrs=24)

>>> from kotti.testing import setUp, tearDown
>>> ignore = setUp()
>>> class User(object):
... pass
>>> daniel = User()
>>> daniel.name = u'daniel'

3.1. API Documentation 55

http://www.fanstatic.org/en/latest/api.html#fanstatic.Resource
http://www.fanstatic.org/en/latest/api.html#fanstatic.Group

Kotti, Release 1.3.0

>>> alice = User()
>>> alice.name = u'alice'
>>> token = make_token(daniel)
>>> validate_token(daniel, token)
True
>>> validate_token(alice, token)
False
>>> validate_token(daniel, 'foo')
False
>>> token = make_token(daniel, seconds=time.time() - 100000)
>>> validate_token(daniel, token)
False
>>> validate_token(daniel, token, valid_hrs=48)
True
>>> tearDown()

kotti.message.send_email(request, recipients, template_name, template_vars=None)
General email sender.

Parameters

• request (kotti.request.Request) – current request.

• recipients (list) – list of email addresses. Each email should be a string like: u‘“John
Doe” <joedoe@foo.com>’.

• template_name (string) – asset specification (e.g. ‘mypackage:templates/email.pt’)

• template_vars (dict) – set of variables present on template.

3.1.5 kotti.migrate

This module aims to make it easier to run the Alembic migration scripts of Kotti and Kotti add-ons by providing a
uniform access.

Commands herein will typically be called by the console script kotti-migrate (see the docstring of that command
below).

Kotti stores the current revision of its migration in table kotti_alembic_versions. The convention here is
<packagename>_alembic_versions. You should normally not need to worry about the name of this table,
as it is created and managed automatically through this module. If, however, you plan to use your own alembic.ini
configuration file for your add-on or application, keep in mind to configure a table name as described above. The table
name can be set using Alembic’s version_table option.

Kotti has start-up code that will create the database from scratch if it doesn’t exist. This code will also call this module’s
function stamp_heads to set the current revision of all migrations registered with this module to the latest. This
assumes that when we create the database from scratch (using metadata.create_all), we don’t need to run any
of the past migrations.

Unfortunately, this won’t help in the situation where a user adds an add-on with migrations to the Kotti site _after_
the database was initialized for the first time. In this case, users of the add-on will need to run kotti-migrate
stamp_head --scripts=yourpackage:alembic, or the add-on author will have to write equivalent code
somewhere in their populate hook.

Add-on authors can register their Alembic scripts with this module by adding their Alembic ‘script directory’ location
to the kotti.alembic_dirs setting. An example:

56 Chapter 3. API

mailto:joedoe@foo.com

Kotti, Release 1.3.0

def kotti_configure(settings):
...
settings['kotti.alembic_dirs'] += ' kotti_contactform:alembic'

kotti-migrate commands ‘list_all’, ‘upgrade_all’ and ‘stamp_heads’ will then include the add-on.

3.1.6 kotti.populate

Populate contains two functions that are called on application startup (if you haven’t modified kotti.populators).

kotti.populate.populate_users()
Create the admin user with the password from the kotti.secret option if there is no user with name ‘admin’
yet.

kotti.populate.populate()
Create the root node (Document) and the ‘about’ subnode in the nodes tree if there are no nodes yet.

3.1.7 kotti.request

class kotti.request.Request(environ, charset=None, unicode_errors=None, de-
code_param_names=None, **kw)

Bases: pyramid.request.Request

Kotti subclasses pyramid.request.Request to make additional attributes / methods available on re-
quest objects and override Pyramid’s pyramid.request.Request.has_permission(). The latter
is needed to support Kotti’s concept of local roles not just for users but also for groups (kotti.security.
list_groups_callback()).

user
Add the authenticated user to the request object.

Result the currently authenticated user

Return type kotti.security.Principal or whatever is returned by the custom princi-
pals database defined in the kotti.principals_factory setting

has_permission(permission, context=None)
Check if the current request has the given permission on the current or explicitly passed context. This
is different from pyramid.request.Request.has_permission`() in that a context other than
the one bound to the request can be passed. This allows to consider local roles for the check.

Parameters

• permission (str) – name of the permission to check

• context (kotti.resources.Node) – context for which the permission is checked.
Defaults to the context on which the request invoked.

Result True if has_permission, False else

Return type bool

3.1.8 kotti.resources

The resources module contains all the classes for Kotti’s persistence layer, which is based on SQLAlchemy.

3.1. API Documentation 57

https://pyramid.readthedocs.io/en/latest/api/request.html#pyramid.request.Request
https://pyramid.readthedocs.io/en/latest/api/request.html#pyramid.request.Request
https://pyramid.readthedocs.io/en/latest/api/request.html#pyramid.request.Request.has_permission

Kotti, Release 1.3.0

Inheritance Diagram

UserDict.DictMixin

kotti.resources.ContainerMixin

kotti.resources.Node

kotti.resources.Content

kotti.resources.Document kotti.resources.File

kotti.resources.DefaultRootCache

kotti.resources.SaveDataMixin

kotti.resources.LocalGroup

sqlalchemy.ext.declarative.api.Base

kotti.resources.Tag kotti.resources.TagsToContents

kotti.security.PersistentACLMixin

kotti.resources.TypeInfokotti.sqla.Base

class kotti.resources.ContainerMixin
Bases: object, UserDict.DictMixin

Containers form the API of a Node that’s used for subitem access and in traversal.

keys()

Result children names

Return type list

children_with_permission(request, permission=’view’)
Return only those children for which the user initiating the request has the asked permission.

58 Chapter 3. API

Kotti, Release 1.3.0

Parameters

• request (kotti.request.Request) – current request

• permission (str) – The permission for which you want the allowed children

Result List of child nodes

Return type list

class kotti.resources.LocalGroup(node, principal_name, group_name)
Bases: sqlalchemy.ext.declarative.api.Base

Local groups allow the assignment of groups or roles to principals (users or groups) for a certain context (i.e.
a Node in the content tree).

id
Primary key for the node in the DB (sqlalchemy.types.Integer)

node_id
ID of the node for this assignment (sqlalchemy.types.Integer)

principal_name
Name of the principal (user or group) (sqlalchemy.types.Unicode)

group_name
Name of the assigned group or role (sqlalchemy.types.Unicode)

class kotti.resources.Node(name=None, parent=None, title=u”, annotations=None, **kwargs)
Bases: sqlalchemy.ext.declarative.api.Base, kotti.resources.ContainerMixin,
kotti.security.PersistentACLMixin

Basic node in the persistance hierarchy.

id
Primary key for the node in the DB (sqlalchemy.types.Integer)

type
Lowercase class name of the node instance (sqlalchemy.types.String)

parent_id
ID of the node’s parent (sqlalchemy.types.Integer)

position
Position of the node within its container / parent (sqlalchemy.types.Integer)

path
The path can be used to efficiently filter for child objects (sqlalchemy.types.Unicode).

name
Name of the node as used in the URL (sqlalchemy.types.Unicode)

title
Title of the node, e.g. as shown in search results (sqlalchemy.types.Unicode)

annotations
Annotations can be used to store arbitrary data in a nested dictionary (kotti.sqla.
NestedMustationDict)

copy(**kwargs)

Result A copy of the current instance

Return type Node

3.1. API Documentation 59

Kotti, Release 1.3.0

class kotti.resources.TypeInfo(**kwargs)
Bases: object

TypeInfo instances contain information about the type of a node.

You can pass arbitrary keyword arguments in the constructor, they will become instance attributes. The most
common are:

• name

• title

• add_view

• addable_to

• edit_links

• selectable_default_views

• uploadable_mimetypes

• add_permission

copy(**kwargs)

Result a copy of the current TypeInfo instance

Return type TypeInfo

addable(context, request)

Parameters

• context (Content or subclass thereof (or anything that has a type_info attribute of type
TypeInfo)) –

• request (kotti.request.Request) – current request

Result True if the type described in ‘self’ may be added to ‘context’, False otherwise.

Return type Boolean

add_selectable_default_view(name, title)
Add a view to the list of default views selectable by the user in the UI.

Parameters

• name (str) – Name the view is registered with

• title (unicode or TranslationString) – Title for the view for display in the
UI.

is_uploadable_mimetype(mimetype)
Check if uploads of the given MIME type are allowed.

Parameters mimetype (str) – MIME type

Result Upload allowed (>0) or forbidden (0). The greater the result, the better is the match. E.g.
image/* (6) is a better match for image/png than * (1).

Return type int

class kotti.resources.Tag(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base

Basic tag implementation. Instances of this class are just the tag itself and can be mapped to instances of
Content (or any of its descendants) via instances of TagsToContents.

60 Chapter 3. API

Kotti, Release 1.3.0

id
Primary key column in the DB (sqlalchemy.types.Integer)

title
Title of the tag sqlalchemy.types.Unicode

items

Result

Return type list

class kotti.resources.TagsToContents(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base

Tags to contents mapping

tag_id
Foreign key referencing Tag.id (sqlalchemy.types.Integer)

content_id
Foreign key referencing Content.id (sqlalchemy.types.Integer)

tag
Relation that adds a content_tags sqlalchemy.orm.backref() to Tag instances to allow easy
access to all content tagged with that tag. (sqlalchemy.orm.relationship())

position
Ordering position of the tag sqlalchemy.types.Integer

title
title of the associated Tag instance (sqlalchemy.ext.associationproxy.
association_proxy)

class kotti.resources.Content(name=None, parent=None, title=u”, annotations=None,
default_view=None, description=u”, language=None,
owner=None, creation_date=None, modification_date=None,
in_navigation=True, tags=None, **kwargs)

Bases: kotti.resources.Node

Content adds some attributes to Node that are useful for content objects in a CMS.

id
Primary key column in the DB (sqlalchemy.types.Integer)

state
Workflow state of the content object (sqlalchemy.types.String)

type_info = <kotti.resources.TypeInfo object>
type_info is a class attribute (TypeInfo)

default_view
Name of the view that should be displayed to the user when visiting an URL without a explicit view name
appended (sqlalchemy.types.String)

description
Description of the content object. In default Kotti this is used e.g. in the description tag in the HTML, in
the search results and rendered below the title in most views. (sqlalchemy.types.Unicode)

language
Language code (ISO 639) of the content object (sqlalchemy.types.Unicode)

owner
Owner (username) of the content object (sqlalchemy.types.Unicode)

3.1. API Documentation 61

Kotti, Release 1.3.0

in_navigation
Shall the content be visible in the navigation? (sqlalchemy.types.Boolean)

creation_date
Date / time the content was created (sqlalchemy.types.DateTime)

modification_date
Date / time the content was last modified (sqlalchemy.types.DateTime)

tags
Tags assigned to the content object (list of str)

class kotti.resources.Document(body=u”, mime_type=’text/html’, **kwargs)
Bases: kotti.resources.Content

Document extends Content with a body and its mime_type. In addition Document and its descendants im-
plement IDefaultWorkflow and therefore are associated with the default workflow (at least in unmodified
Kotti installations).

id
Primary key column in the DB (sqlalchemy.types.Integer)

type_info = <kotti.resources.TypeInfo object>
type_info is a class attribute (TypeInfo)

body
Body text of the Document (sqlalchemy.types.Unicode)

mime_type
MIME type of the Document (sqlalchemy.types.String)

class kotti.resources.SaveDataMixin(data=None, filename=None, mimetype=None,
size=None, **kwargs)

Bases: object

The classmethods must not be implemented on a class that inherits from Base with SQLAlchemy>=1.0,
otherwise that class cannot be subclassed further.

See http://stackoverflow.com/questions/30433960/how-to-use-declare-last-in-sqlalchemy-1-0 # noqa

classmethod from_field_storage(fs)

Create and return an instance of this class from a file upload through a webbrowser.

Parameters fs (cgi.FieldStorage) – FieldStorage instance as found in a kotti.
request.Request’s POST MultiDict.

Result The created instance.

Return type kotti.resources.File

filename = Column(None, Unicode(length=100), table=None)
The filename is used in the attachment view to give downloads the original filename it had when it was
uploaded. (sqlalchemy.types.Unicode)

mimetype = Column(None, String(length=100), table=None)
MIME type of the file (sqlalchemy.types.String)

size = Column(None, Integer(), table=None)
Size of the file in bytes (sqlalchemy.types.Integer)

copy(**kwargs)
Same as Content.copy with additional data support. data needs some special attention, because we don’t
want the same depot file to be assigned to multiple content nodes.

62 Chapter 3. API

http://stackoverflow.com/questions/30433960/how-to-use-declare-last-in-sqlalchemy-1-0

Kotti, Release 1.3.0

class kotti.resources.File(data=None, filename=None, mimetype=None, size=None, **kwargs)
Bases: kotti.resources.SaveDataMixin, kotti.resources.Content

File adds some attributes to Content that are useful for storing binary data.

id
Primary key column in the DB (sqlalchemy.types.Integer)

kotti.resources.get_root(request=None)

Call the function defined by the kotti.root_factory setting and return its result.

Parameters request (kotti.request.Request) – current request (optional)

Result a node in the node tree

Return type Node or descendant;

class kotti.resources.DefaultRootCache
Bases: object

Default implementation for get_root()

root_id
Query for the one node without a parent and return its id. :result: The root node’s id. :rtype: int

get_root()
Query for the root node by its id. This enables SQLAlchemy’s session cache (query is executed only once
per session). :result: The root node. :rtype: Node.

3.1.9 kotti.filedepot

class kotti.filedepot.DBFileStorage
Implementation of depot.io.interfaces.FileStorage,

Uses kotti.filedepot.DBStoredFile to store blob data in an SQL database.

create(content, filename=None, content_type=None)
Saves a new file and returns the file id

Parameters

• content – can either be bytes, another file object or a cgi.FieldStorage.
When filename and content_type parameters are not provided they are deducted
from the content itself.

• filename (string) – filename for this file

• content_type (string) – Mimetype of this file

Returns the unique file_id associated to this file

Return type string

delete(file_or_id)
Deletes a file. If the file didn’t exist it will just do nothing.

Parameters file_or_id – can be either DBStoredFile or a file_id

exists(file_or_id)
Returns if a file or its ID still exist.

Returns Returns if a file or its ID still exist.

3.1. API Documentation 63

https://depot.readthedocs.io/en/latest/api.html#depot.io.interfaces.FileStorage

Kotti, Release 1.3.0

Return type bool

static get(file_id)
Returns the file given by the file_id

Parameters file_id (string) – the unique id associated to the file

Result a kotti.filedepot.DBStoredFile instance

Return type kotti.filedepot.DBStoredFile

replace(file_or_id, content, filename=None, content_type=None)
Replaces an existing file, an IOError is raised if the file didn’t already exist.

Given a StoredFile or its ID it will replace the current content with the provided content value. If
filename and content_type are provided or can be deducted by the content itself they will also
replace the previous values, otherwise the current values are kept.

Parameters

• file_or_id – can be either DBStoredFile or a file_id

• content – can either be bytes, another file object or a cgi.FieldStorage.
When filename and content_type parameters are not provided they are deducted
from the content itself.

• filename (string) – filename for this file

• content_type (string) – Mimetype of this file

class kotti.filedepot.DBStoredFile(file_id, filename=None, content_type=None,
last_modified=None, content_length=None, **kwds)

depot.io.interfaces.StoredFile implementation that stores file data in SQL database.

Can be used together with kotti.filedepot.DBFileStorage to implement blobs storage in the
database.

static close(*args, **kwargs)
Implement StoredFile.close(). DBStoredFile never closes.

static closed()
Implement StoredFile.closed().

content_length
Size of the blob in bytes (sqlalchemy.types.Integer)

content_type
MIME type of the blob (sqlalchemy.types.String)

data
The binary data itself (sqlalchemy.types.LargeBinary)

file_id
Unique file id given to this blob (sqlalchemy.types.String)

filename
The original filename it had when it was uploaded. (sqlalchemy.types.String)

id
Primary key column in the DB (sqlalchemy.types.Integer)

last_modified
Date / time the blob was created or last modified (sqlalchemy.types.DateTime)

name
Implement StoredFile.name().

64 Chapter 3. API

https://depot.readthedocs.io/en/latest/api.html#depot.io.interfaces.StoredFile

Kotti, Release 1.3.0

Result the filename of the saved file

Return type string

read(n=-1)
Reads n bytes from the file.

If n is not specified or is -1 the whole file content is read in memory and returned

seek(offset, whence=0)
Change stream position.

Change the stream position to the given byte offset. The offset is interpreted relative to the position
indicated by whence.

Parameters

• offset (int) – Position for the cursor

• whence (int) –

– 0 – start of stream (the default); offset should be zero or positive

– 1 – current stream position; offset may be negative

– 2 – end of stream; offset is usually negative

static seekable()
Implement StoredFile.seekable().

tell()
Returns current position of file cursor

Result Current file cursor position.

Return type int

static writable()
Implement StoredFile.writable().

class kotti.filedepot.StoredFileResponse(f, request, disposition=’attachment’,
cache_max_age=604800, content_type=None,
content_encoding=None)

A Response object that can be used to serve an UploadedFile instance.

Code adapted from pyramid.response.FileResponse.

class kotti.filedepot.TweenFactory(handler, registry)
Factory for a Pyramid tween in charge of serving Depot files.

This is the Pyramid tween version of depot.middleware.DepotMiddleware. It does exactly the same
as Depot’s WSGI middleware, but operates on a pyramid.request.Request object instead of the WSGI
environment.

kotti.filedepot.extract_depot_settings(prefix=’kotti.depot.’, settings=None)
Merges items from a dictionary that have keys that start with prefix to a list of dictionaries.

Parameters

• prefix (string) – A dotted string representing the prefix for the common values

• settings – A dictionary with settings. Result is extracted from this

kotti.filedepot.includeme(config)
Pyramid includeme hook.

Parameters config (pyramid.config.Configurator) – app config

3.1. API Documentation 65

https://pyramid.readthedocs.io/en/latest/api/response.html#pyramid.response.FileResponse
https://depot.readthedocs.io/en/latest/api.html#depot.middleware.DepotMiddleware
https://pyramid.readthedocs.io/en/latest/api/request.html#pyramid.request.Request
https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator

Kotti, Release 1.3.0

kotti.filedepot.set_metadata(event)
Set DBStoredFile metadata based on data

Parameters event (ObjectInsert or ObjectUpdate) – event that trigerred this handler.

3.1.10 kotti.sanitizers

For a high level introduction and available configuration options see Sanitizers.

kotti.sanitizers.sanitize(html, sanitizer)
Sanitize HTML

Parameters

• html (basestring) – HTML to be sanitized

• sanitizer (str) – name of the sanitizer to use

Result sanitized HTML

Return type unicode

kotti.sanitizers.xss_protection(html)
Sanitizer that removes tags that are not considered XSS safe. See bleach_whitelist.
generally_xss_unsafe for a complete list of tags that are removed. Attributes and styles are left un-
touched.

Parameters html (basestring) – HTML to be sanitized

Result sanitized HTML

Return type unicode

kotti.sanitizers.minimal_html(html)
Sanitizer that only leaves a basic set of tags and attributes. See bleach_whitelist.
markdown_tags, bleach_whitelist.print_tags, bleach_whitelist.markdown_attrs,
bleach_whitelist.print_attrs for a complete list of tags and attributes that are allowed. All styles
are completely removed.

Parameters html (basestring) – HTML to be sanitized

Result sanitized HTML

Return type unicode

kotti.sanitizers.no_html(html)
Sanitizer that removes all tags.

Parameters html (basestring) – HTML to be sanitized

Result plain text

Return type unicode

kotti.sanitizers.includeme(config)
Pyramid includeme hook.

Parameters config (pyramid.config.Configurator) – app config

66 Chapter 3. API

https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator

Kotti, Release 1.3.0

3.1.11 kotti.security

kotti.security.has_permission(permission, context, request)
Check if the current request has a permission on the given context.

Deprecated since version 0.9.

Parameters

• permission (str) – permission to check for

• context (:class:kotti.resources.Node) – context that should be checked for the
given permission

• request (kotti.request.Request) – current request

Result True if request has the permission, False else

Return type bool

class kotti.security.Principal(name, password=None, active=True, confirm_token=None, ti-
tle=u”, email=None, groups=None)

A minimal ‘Principal’ implementation.

The attributes on this object correspond to what one ought to implement to get full support by the system. You’re
free to add additional attributes.

• As convenience, when passing ‘password’ in the initializer, it is hashed using
‘get_principals().hash_password’

• The boolean ‘active’ attribute defines whether a principal may log in. This allows the deactivation of
accounts without deleting them.

• The ‘confirm_token’ attribute is set whenever a user has forgotten their password. This token is used to
identify the receiver of the email. This attribute should be set to ‘None’ once confirmation has succeeded.

class kotti.security.AbstractPrincipals
This class serves as documentation and defines what methods are expected from a Principals database.

Principals mostly provides dict-like access to the principal objects in the database. In addition, there’s the
‘search’ method which allows searching users and groups.

‘hash_password’ is for initial hashing of a clear text password, while ‘validate_password’ is used by the login
to see if the entered password matches the hashed password that’s already in the database.

Use the ‘kotti.principals’ settings variable to override Kotti’s default Principals implementation with your own.

keys()
Return a list of principal ids that are in the database.

search(**kwargs)
Return an iterable with principal objects that correspond to the search arguments passed in.

This example would return all principals with the id ‘bob’:

get_principals().search(name=u’bob’)

Here, we ask for all principals that have ‘bob’ in either their ‘name’ or their ‘title’. We pass ‘bob’ instead
of ‘bob’ to indicate that we want case-insensitive substring matching:

get_principals().search(name=u’bob’, title=u’bob’)

This call should fail with AttributeError unless there’s a ‘foo’ attribute on principal objects that supports
search:

get_principals().search(name=u’bob’, foo=u’bar’)

3.1. API Documentation 67

Kotti, Release 1.3.0

hash_password(password)
Return a hash of the given password.

This is what’s stored in the database as ‘principal.password’.

validate_password(clear, hashed)
Returns True if the clear text password matches the hash.

kotti.security.list_groups(name, context=None)
List groups for principal with a given name.

The optional context argument may be passed to check the list of groups in a given context.

kotti.security.set_groups(name, context, groups_to_set=())
Set the list of groups for principal with given name and in given context.

kotti.security.list_groups_callback(name, request)
List the groups for the principal identified by name. Consider authz_context to support assigment of local
roles to groups.

kotti.security.principals_with_local_roles(context, inherit=True)
Return a list of principal names that have local roles in the context.

class kotti.security.Principals
Kotti’s default principal database.

Look at ‘AbstractPrincipals’ for documentation.

This is a default implementation that may be replaced by using the ‘kotti.principals’ settings variable.

factory
alias of Principal

search(match=’any’, **kwargs)
Search the principal database.

Parameters

• match (str) – any to return all principals matching any search param, all to
return only principals matching all params

• kwargs (varying.) – Search conditions, e.g. name='bob', active=True.

Result SQLAlchemy query object

Return type sqlalchemy.orm.query.Query`

68 Chapter 3. API

Kotti, Release 1.3.0

3.1.12 kotti.sqla

Inheritance Diagram

kotti.sqla.ACLType

kotti.sqla.JsonType

kotti.sqla.Base

sqlalchemy.sql.type_api.TypeDecorator kotti.sqla.MutationDict

kotti.sqla.NestedMutationDict

sqlalchemy.ext.mutable.Mutable

kotti.sqla.MutationList

kotti.sqla.NestedMutationList

kotti.sqla.NestedMixin

sqlalchemy.ext.mutable.MutableBase

sqlalchemy.sql.base.SchemaEventTarget sqlalchemy.sql.type_api.TypeEngine

sqlalchemy.sql.visitors.Visitable

class kotti.sqla.JsonType(*args, **kwargs)
http://www.sqlalchemy.org/docs/core/types.html#marshal-json-strings

impl
alias of Text

class kotti.sqla.MutationDict(data)
http://www.sqlalchemy.org/docs/orm/extensions/mutable.html

3.1. API Documentation 69

http://www.sqlalchemy.org/docs/core/types.html#marshal-json-strings
http://www.sqlalchemy.org/docs/orm/extensions/mutable.html

Kotti, Release 1.3.0

3.1.13 kotti.testing

Inheritance Diagram

kotti.testing.Dummy

kotti.testing.DummyRequest

pyramid.testing.DummyRequest kotti.testing.EventTestBase

unittest.case.TestCase

kotti.testing.FunctionalTestBase kotti.testing.UnitTestBase

kotti.testing.RootFactorypyramid.i18n.LocalizerRequestMixin pyramid.request.CallbackMethodsMixin pyramid.security.AuthenticationAPIMixin pyramid.security.AuthorizationAPIMixin pyramid.url.URLMethodsMixin pyramid.util.InstancePropertyMixin pyramid.view.ViewMethodsMixin

kotti.testing.includeme_login(config)
Pyramid includeme hook.

Parameters config (pyramid.config.Configurator) – app config

kotti.testing.includeme_layout(config)
Pyramid includeme hook.

Parameters config (pyramid.config.Configurator) – app config

kotti.testing.include_testing_view(config)
Pyramid includeme hook.

Parameters config (pyramid.config.Configurator) – app config

70 Chapter 3. API

https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator
https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator
https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator

Kotti, Release 1.3.0

3.1.14 kotti.tests

Fixture dependencies

allwarnings

app

webtest

config

db_session

depot_tween

dummy_requesteventsworkflow

browser

filedepot

root

mock_filedepotno_filedepots

connection

content

custom_settings

unresolved_settings

settings

setup_app dummy_mailer

kotti.tests.image_asset()
Return an image file

3.1. API Documentation 71

Kotti, Release 1.3.0

kotti.tests.image_asset2()
Return another image file

kotti.tests.custom_settings()
This is a dummy fixture meant to be overriden in add on package’s conftest.py. It can be used to inject
arbitrary settings for third party test suites. The default settings dictionary will be updated with the dictionary
returned by this fixture.

This is also a good place to import your add on’s resources module to have the corresponding tables created
during create_all() in kotti.tests.content().

Result settings

Return type dict

kotti.tests.config(request, settings)
returns a Pyramid Configurator object initialized with Kotti’s default (test) settings.

kotti.tests.connection(custom_settings)
sets up a SQLAlchemy engine and returns a connection to the database. The connection string used for testing
can be specified via the KOTTI_TEST_DB_STRING environment variable. The custom_settings fixture
is needed to allow users to import their models easily instead of having to override the connection.

kotti.tests.content(connection, settings)
sets up some default content using Kotti’s testing populator.

kotti.tests.db_session(config, content, connection, request)
returns a db session object and sets up a db transaction savepoint, which will be rolled back after the test.

kotti.tests.dummy_request(config, request, monkeypatch)
returns a dummy request object after registering it as the currently active request. This is needed when pyra-
mid.threadlocal.get_current_request is used.

kotti.tests.events(config, request)
sets up Kotti’s default event handlers.

kotti.tests.browser(db_session, request, setup_app)
returns an instance of zope.testbrowser. The kotti.testing.user pytest marker (or pytest.mark.user) can be used
to pre-authenticate the browser with the given login name: @user(‘admin’).

kotti.tests.root(db_session)
returns Kotti’s ‘root’ node.

kotti.tests.workflow(config)
loads and activates Kotti’s default workflow rules.

kotti.tests.depot_tween(request, config, dummy_request)
Sets up the Depot tween and patches Depot’s set_middleware to suppress exceptions on subsequent calls

kotti.tests.mock_filedepot(request, depot_tween)
Configures a mock depot store for depot.manager.DepotManager

This filedepot is not integrated with dbsession. Can be used in simple, standalone unit tests.

kotti.tests.filedepot(db_session, request, depot_tween)
Configures a dbsession integrated mock depot store for depot.manager.DepotManager

kotti.tests.no_filedepots(db_session, request, depot_tween)
A filedepot fixture to empty and then restore DepotManager configuration

72 Chapter 3. API

https://depot.readthedocs.io/en/latest/api.html#depot.manager.DepotManager
https://depot.readthedocs.io/en/latest/api.html#depot.manager.DepotManager

Kotti, Release 1.3.0

3.1.15 kotti.traversal

This module contains Kotti’s node tree traverser.

In Kotti versions < 1.3.0, Pyramid’s default traverser (pyramid.traversal.ResourceTreeTraverser) was
used. This traverser still works, but it becomes decreasingly performant the deeper your resource tree is nested. This
is caused by the fact, that it generates one DB query per level, whereas the Kotti traverser (kotti.traversal.
NodeTreeTraverser) generates a single DB query, regardless of the number of request path segments. This
query not only finds the context, but also returns all node items in its lineage. This means, that neither accessing
context.parent nor calling pyramid.location.lineage() will result in additional DB queries.

The performance benefits are huge. The table below compares the requests per seconds (rps) that were reached on a
developer’s notebook against a PostgreSQL database with 4419 kotti.resources.Document nodes.

request.path Pyramid traverser (rps) Kotti traverser (rps)
/ 49 49
/a/ 41 36
/a/b/ 30 35
/a/b/c/ 23 34
/a/b/c/d/ 19 33
/a/b/c/d/e/ 16 33
/a/b/c/d/e/f/ 14 33
/a/b/c/d/e/f/g/ 12 32
/a/b/c/d/e/f/g/h/ 11 31
/a/b/c/d/e/f/g/h/i/ 10 30
/a/b/c/d/e/f/g/h/i/j/ 8 29

class kotti.traversal.NodeTreeTraverser(root)
An optimized resource tree traverser for kotti.resources.Node based resource trees.

static traverse(root, vpath_tuple)

Parameters

• root (kotti.resources.Node) – The node where traversal should start

• vpath_tuple (tuple) – Tuple of path segments to be traversed

Returns List of nodes, from root (excluded) to context (included). Each node has its par-
ent set already, so that no subsequent queries will be be performed, e.g. when calling
lineage(context)

Return type list of kotti.resources.Node

kotti.traversal.includeme(config)
Pyramid includeme hook.

Parameters config (pyramid.config.Configurator) – app config

3.1. API Documentation 73

https://pyramid.readthedocs.io/en/latest/api/location.html#pyramid.location.lineage
https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator

Kotti, Release 1.3.0

3.1.16 kotti.util

Inheritance Diagram

kotti.util.ActionButton

kotti.util.Link

kotti.util.DontCache

kotti.util.LRUCacheSetItem

repoze.lru.LRUCachekotti.util.LinkBase

kotti.util.LinkParent kotti.util.LinkRenderer

kotti.util.TemplateStructure

class kotti.util.LinkRenderer(name, predicate=None)
Bases: kotti.util.LinkBase

A menu link that renders a view to render the link.

class kotti.util.LinkParent(title, children)
Bases: kotti.util.LinkBase

A menu link that renders sublinks in a dropdown.

kotti.util.extract_from_settings(prefix, settings=None)

>>> settings = {
... 'kotti_twitter.foo_bar': '1', 'kotti.spam_eggs': '2'}
>>> print(extract_from_settings('kotti_twitter.', settings))
{'foo_bar': '1'}

kotti.util.title_to_name(title, blacklist=(), max_length=None)
If max_length is None, fallback to the name column size (kotti.resources.Node)

kotti.util.camel_case_to_name(text)

>>> camel_case_to_name('FooBar')
'foo_bar'

74 Chapter 3. API

Kotti, Release 1.3.0

>>> camel_case_to_name('TXTFile')
'txt_file'
>>> camel_case_to_name ('MyTXTFile')
'my_txt_file'
>>> camel_case_to_name('froBOZ')
'fro_boz'
>>> camel_case_to_name('f')
'f'

3.1.17 kotti.views

class kotti.views.BaseView(context, request)
Very basic view class that can be subclassed. Does nothing more than assignment of context and request
to instance attributes on initialization.

kotti.views.includeme(config)
Pyramid includeme hook.

Parameters config (pyramid.config.Configurator) – app config

kotti.views.cache

kotti.views.cache.set_max_age(response, delta, cache_ctrl=None)
Sets max-age and expires headers based on the timedelta delta.

If cache_ctrl is not None, I’ll add items found therein to the Cache-Control header.

Will overwrite existing values and preserve non overwritten ones.

kotti.views.cache.includeme(config)
Pyramid includeme hook.

Parameters config (pyramid.config.Configurator) – app config

kotti.views.edit

Edit views.

kotti.views.edit.includeme(config)
Pyramid includeme hook.

Parameters config (pyramid.config.Configurator) – app config

kotti.views.edit.actions

Action views

class kotti.views.edit.actions.NodeActions(context, request)
Bases: object

Actions related to content nodes.

back(view=None)
Redirect to the given view of the context, the referrer of the request or the default_view of the context.

Return type pyramid.httpexceptions.HTTPFound

3.1. API Documentation 75

https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator
https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator
https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator
https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound

Kotti, Release 1.3.0

workflow_change()
Handle workflow change requests from workflow dropdown.

Result Redirect response to the referrer of the request.

Return type pyramid.httpexceptions.HTTPFound

copy_node()
Copy nodes view. Copy the current node or the selected nodes in the contents view and save the result in
the session of the request.

Result Redirect response to the referrer of the request.

Return type pyramid.httpexceptions.HTTPFound

cut_nodes()
Cut nodes view. Cut the current node or the selected nodes in the contents view and save the result in the
session of the request.

Result Redirect response to the referrer of the request.

Return type pyramid.httpexceptions.HTTPFound

paste_nodes()
Paste nodes view. Paste formerly copied or cutted nodes into the current context. Note that a cutted node
can not be pasted into itself.

Result Redirect response to the referrer of the request.

Return type pyramid.httpexceptions.HTTPFound

move(move)
Do the real work to move the selected nodes up or down. Called by the up and the down view.

Result Redirect response to the referrer of the request.

Return type pyramid.httpexceptions.HTTPFound

up()
Move up nodes view. Move the selected nodes up by 1 position and get back to the referrer of the request.

Result Redirect response to the referrer of the request.

Return type pyramid.httpexceptions.HTTPFound

down()
Move down nodes view. Move the selected nodes down by 1 position and get back to the referrer of the
request.

Result Redirect response to the referrer of the request.

Return type pyramid.httpexceptions.HTTPFound

set_visibility(show)
Do the real work to set the visibility of nodes in the menu. Called by the show and the hide view.

Result Redirect response to the referrer of the request.

Return type pyramid.httpexceptions.HTTPFound

show()
Show nodes view. Switch the in_navigation attribute of selected nodes to True and get back to the
referrer of the request.

Result Redirect response to the referrer of the request.

Return type pyramid.httpexceptions.HTTPFound

76 Chapter 3. API

https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound
https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound
https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound
https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound
https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound
https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound
https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound
https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound
https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound

Kotti, Release 1.3.0

hide()
Hide nodes view. Switch the in_navigation attribute of selected nodes to False and get back to the
referrer of the request.

Result Redirect response to the referrer of the request.

Return type pyramid.httpexceptions.HTTPFound

delete_node()
Delete node view. Renders either a view to delete the current node or handle the deletion of the current
node and get back to the default view of the node.

Result Either a redirect response or a dictionary passed to the template for rendering.

Return type pyramid.httpexceptions.HTTPFound or dict

delete_nodes()
Delete nodes view. Renders either a view to delete multiple nodes or delete the selected nodes and get
back to the referrer of the request.

Result Either a redirect response or a dictionary passed to the template for rendering.

Return type pyramid.httpexceptions.HTTPFound or dict

rename_node()
Rename node view. Renders either a view to change the title and name for the current node or handle the
changes and get back to the default view of the node.

Result Either a redirect response or a dictionary passed to the template for rendering.

Return type pyramid.httpexceptions.HTTPFound or dict

rename_nodes()
Rename nodes view. Renders either a view to change the titles and names for multiple nodes or handle
the changes and get back to the referrer of the request.

Result Either a redirect response or a dictionary passed to the template for rendering.

Return type pyramid.httpexceptions.HTTPFound or dict

change_state()
Change state view. Renders either a view to handle workflow changes for multiple nodes or handle the
selected workflow changes and get back to the referrer of the request.

Result Either a redirect response or a dictionary passed to the template for rendering.

Return type pyramid.httpexceptions.HTTPFound or dict

kotti.views.edit.actions.contents_buttons(context, request)
Build the action buttons for the contents view based on the current state and the persmissions of the user.

Result List of ActionButtons.

Return type list

kotti.views.edit.actions.content_type_factories(context, request)
Renders the drop down menu for Add button in editor bar.

Result Dictionary passed to the template for rendering.

Return type pyramid.httpexceptions.HTTPFound or dict

kotti.views.edit.actions.contents(context, request)
Contents view. Renders either the contents view or handle the action button actions of the view.

Result Either a redirect response or a dictionary passed to the template for rendering.

3.1. API Documentation 77

https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound
https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound
https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound
https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound
https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound
https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound
https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound

Kotti, Release 1.3.0

Return type pyramid.httpexceptions.HTTPFound or dict

kotti.views.edit.actions.move_child_position(context, request)
Move the child from one position to another.

Parameters

• context (:class:kotti.resources.Node or descendant) – “Container”
node in which the child changes its position.

• request – Current request (of method POST). Must contain either “from” and “to”
params or a json_body that contain(s) the 0-based old (i.e. the current index of the child
to be moved) and new position (its new index) values.

Result JSON serializable object with a single attribute (“result”) that is either “success” or “error”.

Return type dict

kotti.views.edit.actions.workflow(context, request)
Renders the drop down menu for workflow actions.

Result Dictionary passed to the template for rendering.

Return type dict

kotti.views.edit.actions.actions(context, request)
Renders the drop down menu for Actions button in editor bar.

Result Dictionary passed to the template for rendering.

Return type dict

kotti.views.edit.actions.includeme(config)
Pyramid includeme hook.

Parameters config (pyramid.config.Configurator) – app config

kotti.views.edit.content

Content edit views

kotti.views.edit.content.includeme(config)
Pyramid includeme hook.

Parameters config (pyramid.config.Configurator) – app config

kotti.views.edit.default_views

summary Default view selctor views

kotti.views.edit.default_views.includeme(config)
Pyramid includeme hook.

Parameters config (pyramid.config.Configurator) – app config

kotti.views.file

kotti.views.file.includeme(config)
Pyramid includeme hook.

Parameters config (pyramid.config.Configurator) – app config

78 Chapter 3. API

https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound
https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator
https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator
https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator
https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator

Kotti, Release 1.3.0

kotti.views.form

Form related base views from which you can inherit.

Inheritance Diagram

UserDict.DictMixin

kotti.views.form.FileUploadTempStore

colander.SchemaType

kotti.views.form.ObjectType

deform.field.Field

deform.form.Form

kotti.views.form.Form

deform.widget.Widget

kotti.views.form.CommaSeparatedListWidget

kotti.views.form.AddFormView

kotti.views.form.BaseFormView

kotti.views.form.EditFormView

pyramid_deform.FormView

class kotti.views.form.ObjectType
A type leaving the value untouched.

class kotti.views.form.Form(schema, action=”, method=’POST’, buttons=(), formid=’deform’,
use_ajax=False, ajax_options=’{}’, autocomplete=None, **kw)

A deform Form that allows ‘appstruct’ to be set on the instance.

class kotti.views.form.BaseFormView(context, request, **kwargs)
A basic view for forms with save and cancel buttons.

form_class
alias of Form

class kotti.views.form.EditFormView(context, request, **kwargs)
A base form for content editing purposes.

Set self.schema_factory to the context’s schema. Values of fields in this schema will be set as attributes on the
context. An example:

import colander
from deform.widget import RichTextWidget

from kotti.edit.content import ContentSchema
from kotti.edit.content import EditFormView

class DocumentSchema(ContentSchema):

3.1. API Documentation 79

Kotti, Release 1.3.0

body = colander.SchemaNode(
colander.String(),
title=u'Body',
widget=RichTextWidget(),
missing=u'',
)

class DocumentEditForm(EditFormView):
schema_factory = DocumentSchema

class kotti.views.form.AddFormView(context, request, **kwargs)
A base form for content adding purposes.

Set self.schema_factory as with EditFormView. Also set item_type to your model class. An example:

class DocumentAddForm(AddFormView):
schema_factory = DocumentSchema
add = Document
item_type = u'Document'

class kotti.views.form.FileUploadTempStore(request)
A temporary storage for file file uploads

File uploads are stored in the session so that you don’t need to upload your file again if validation of another
schema node fails.

kotti.views.form.validate_file_size_limit(node, value)
File size limit validator.

You can configure the maximum size by setting the kotti.max_file_size option to the maximum number of bytes
that you want to allow.

kotti.views.login

Login / logout and forbidden views and forms.

class kotti.views.login.UserSelfRegistered(obj, request=None)
This event is emitted just after user self registered. Intended use is to allow addons to do some preparation for
such user - create custom contents, nodes etc. Event handler object parameter is a Principal object

kotti.views.login.login_success_callback(request, user, came_from)
Default implementation of kotti.login_success_callback. You can implement a custom function
with the same signature and point the kotti.login_success_callback setting to it.

Parameters

• request (kotti.request.Request) – Current request

• user (kotti.security.Princial) – Principal, who just logged in successfully.

• came_from (str) – URL the user came from

Result Any Pyramid response object, by default a redirect to came_from or the context where
login was called.

Return type pyramid.httpexceptions.HTTPFound

kotti.views.login.reset_password_callback(request, user)
Default implementation of kotti.reset_password_callback. You can implement a custom function
with the same signature and point the kotti.reset_password_callback setting to it.

80 Chapter 3. API

https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound

Kotti, Release 1.3.0

Parameters

• request (kotti.request.Request) – Current request

• user (kotti.security.Princial) – Principal, who’s password was requested to
be reset.

Result Any Pyramid response object, by default a redirect to to the same URL from where the
password reset was called.

Return type pyramid.httpexceptions.HTTPFound

kotti.views.login.login(context, request)
Login view. Renders either the login or password forgot form templates or handles their form submission and
redirects to came_from on success.

Result Either a redirect response or a dictionary passed to the template for rendering

Return type pyramid.httpexceptions.HTTPFound or dict

kotti.views.login.logout(context, request)
Logout view. Always redirects the user to where he came from.

Result Redirect to came_from

Return type pyramid.httpexceptions.HTTPFound

class kotti.views.login.SetPasswordSchema(*arg, **kw)
Schema for the set password form

password = None
colander.String

token = None
colander.String

email = None
colander.String

continue_to = None
colander.String

kotti.views.login.set_password(context, request, success_msg=u’You have reset your pass-
word.’)

Set password view. Displays the set password form and handles its form submission.

Parameters

• context (kotti.resources.Content) – Current context

• request (kotti.request.Request) – Current request

• success_msg (str or TranslationString) – Message to display on success-
ful submission handling

Result Redirect response or dictionary passed to the template for rendering.

Return type pyramid.httpexceptions.HTTPFound or dict

kotti.views.login.forbidden_redirect(context, request)
Forbidden redirect view. Redirects to the login form for anonymous users or to the forbidden view for authenti-
cated users.

Result Redirect to one of the above.

Return type pyramid.httpexceptions.HTTPFound

3.1. API Documentation 81

https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound
https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound
https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound
https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound
https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound

Kotti, Release 1.3.0

kotti.views.login.forbidden_view(request)
Forbidden view. Raises 403 for requests not originating from a web browser like device.

Result 403

Return type pyramid.httpexceptions.HTTPForbidden

kotti.views.login.forbidden_view_html(request)
Forbidden view for browsers.

Result empty dictionary passed to the template for rendering

Return type dict

kotti.views.login.includeme(config)
Pyramid includeme hook.

Parameters config (pyramid.config.Configurator) – app config

kotti.views.site_setup

kotti.views.slots

This module allows add-ons to assign views to slots defined in the overall page. In other systems, these are called
portlets or viewlets.

A simple example that’ll include the output of the ‘hello_world’ view in in the left column of every page:

from kotti.views.slots import assign_slot
assign_slot('hello_world', 'left')

It is also possible to pass parameters to the view:

assign_slot('last_tweets', 'right', params=dict(user='foo'))

In the view you can get the slot in that the view is rendered from the request:

@view_config(name='last_tweets')
def view(request, context):

slot = request.kotti_slot
...

If no view can be found for the given request and slot, the slot remains empty. If you want to force your slot not to be
rendered, raise pyramid.exceptions.PredicateMismatch inside your view:

from pyramid.exceptions import PredicateMismatch

@view_config(name='last_tweets')
def view(request, context):

if some_condition:
raise PredicateMismatch()

return {...}

Usually you’ll want to call kotti.views.slots.assign_slot() inside an includeme function and not on
a module level, to allow users of your package to include your slot assignments through the pyramid.includes
configuration setting.

kotti.views.slots.assign_slot(view_name, slot, params=None)
Assign view to slot.

82 Chapter 3. API

https://pyramid.readthedocs.io/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPForbidden
https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator
https://pyramid.readthedocs.io/en/latest/api/exceptions.html#pyramid.exceptions.PredicateMismatch

Kotti, Release 1.3.0

Parameters

• view_name (str) – Name of the view to assign.

• slot (str) – Name of the slot to assign to. Possible values are: left, right, abovecontent,
belowcontent, inhead, beforebodyend, edit_inhead

• params (dict) – Optionally allows to pass POST parameters to the view.

kotti.views.users

User management screens

kotti.views.users.name_pattern_validator(node, value)

>>> name_pattern_validator(None, u'bob')
>>> name_pattern_validator(None, u'b ob')
Traceback (most recent call last):
Invalid: <unprintable Invalid object>
>>> name_pattern_validator(None, u'b:ob')
Traceback (most recent call last):
Invalid: <unprintable Invalid object>

kotti.views.users.includeme(config)
Pyramid includeme hook.

Parameters config (pyramid.config.Configurator) – app config

kotti.views.util

class kotti.views.util.TemplateAPI(context, request, bare=None, **kwargs)
Bases: object

This implements the api object that’s passed to all templates.

Use dict-access as a shortcut to retrieve template macros from templates.

static is_location(context)
Does context implement pyramid.interfaces.ILocation?

Parameters context (kotti.interfaces.INode) – The context.

Return type bool

Returns True if Is the context object implements pyramid.interfaces.ILocation.

site_title
The site title.

Result Value of the kotti.site_title setting (if specified) or the root item’s title
attribute.

Return type unicode

page_title
Title for the current page as used in the <head> section of the default master.pt template.

Result ‘[Human readable view title]‘‘context.title‘‘ - site_title()’‘

Return type unicode

3.1. API Documentation 83

https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator

Kotti, Release 1.3.0

url(context=None, *elements, **kwargs)
URL construction helper. Just a convenience wrapper for pyramid.request.resource_url()
with the same signature. If context is None the current context is passed to resource_url.

root
The site root.

Result The root object of the site.

Return type kotti.resources.Node

navigation_root
The root node for the navigation.

Result Nearest node in the lineage() that provides kotti.interfaces.
INavigationRoot or root() if no node provides that interface.

Return type kotti.resources.Node

lineage
Lineage from current context to the root node.

Result List of nodes.

Return type list of kotti.resources.Node

breadcrumbs
List of nodes from the navigation_root() to the context.

Result List of nodes.

Return type list of kotti.resources.Node

has_permission(permission, context=None)
Convenience wrapper for pyramid.security.has_permission() with the same signature. If
context is None the current context is passed to has_permission.

static inside(resource1, resource2)
Is resource1 ‘inside’ resource2? Return True if so, else False.

resource1 is ‘inside’ resource2 if resource2 is a lineage ancestor of resource1. It is a lineage
ancestor if its parent (or one of its parent’s parents, etc.) is an ancestor.

static sanitize(html, sanitizer=’default’)
Convenience wrapper for kotti.sanitizers.sanitize().

Parameters

• html (unicode) – HTML to be sanitized

• sanitizer (str) – name of the sanitizer to use.

Result sanitized HTML

Return type unicode

kotti.views.view

kotti.views.view.view_content_default(context, request)
This view is always registered as the default view for any Content.

Its job is to delegate to a view of which the name may be defined per instance. If a instance level view is not
defined for ‘context’ (in ‘context.defaultview’), we will fall back to a view with the name ‘view’.

84 Chapter 3. API

https://pyramid.readthedocs.io/en/latest/api/security.html#pyramid.security.has_permission
https://pyramid.readthedocs.io/en/latest/glossary.html#term-lineage

Kotti, Release 1.3.0

kotti.views.view.includeme(config)
Pyramid includeme hook.

Parameters config (pyramid.config.Configurator) – app config

3.1.18 kotti.workflow

3.1. API Documentation 85

https://pyramid.readthedocs.io/en/latest/api/config.html#pyramid.config.Configurator

Kotti, Release 1.3.0

86 Chapter 3. API

CHAPTER 4

Getting Help / Contributing

4.1 Getting Help

4.2 Contributing

The Kotti project can use your help in developing the software, requesting features, reporting bugs, writing developer
and end-user documentation – the usual assortment for an open source project.

Please devote some of your time to the project.

4.2.1 Contributing to the Code Base

To contribute to Kotti itself, and to test and run against the master branch (the current development code base), first
create an account on GitHub if you don’t have one. Fork Kotti to your github account, and follow the usual steps to
get a local clone, with origin as your fork, and with upstream as the Kotti/Kotti repo. Then, you will be able
to make branches for contributing, etc. Please read the docs on GitHub if you are new to development, but the steps,
after you have your own fork, would be something like this:

git clone https://github.com/your_github/Kotti.git

cd Kotti

git remote add upstream git://github.com/Kotti/Kotti.git

Now you should be set up to make branches for this and that, doing a pull request from a branch, and the usual git
procedures. You may wish to read the GitHub fork-a-repo help.

To run and develop within your clone, do these steps:

virtualenv . --no-site-packages

bin/python setup.py develop

87

https://help.github.com/articles/fork-a-repo

Kotti, Release 1.3.0

This will create a new virtualenv “in place” and do the python develop steps to use the Kotti code in the repo.

Run bin/pip install kotti_someaddon, and add a kotti_someaddon entry to app.ini, as you would do
normally, to use add-ons.

You may wish to learn about the virtualenvwrapper system if you have several add-ons you develop or contribute
to. For example, you could have a development area devoted to Kotti work, ~/kotti, and in there you could have
clones of repos for various add-ons. And for each, or in some combination, you would use virtualenvwrapper to
create virtualenvs for working with individual add-ons or Kotti-based projects. virtualenvwrapper will set
these virtualenvs up, by default, in a directory within your home directory. With this setup, you can do workon
kotti_this and workon kotti_that to switch between different virtualenvs. This is handy for maintaining
different sets of dependencies and customizations, and for staying organized.

4.2.2 Contributing to Developer Docs

Kotti uses the Sphinx tool, using reStructuredText to write documents, stored in docs/ in a directory structure with .rst
files. Use the normal git procedures for first making a branch, e.g., navigation_docs, then after making changes,
commit, push to this branch on your fork, and do a pull request from there, just as you would for contributing to the
code base.

In your Kotti clone you can install the requirements for building and viewing the documents locally:

python setup.py docs

cd docs/

make html

Then you can check the .html files in the _build/ directory locally, before you do an actual pull request.

The rendered docs are built and hosted on readthedocs.org.

4.2.3 Contributing to User Docs

The Kotti User Manual also uses Sphinx and reStructuredText, but there is a bit more to the procedure, because several
additional tools are used. Selenium is used for making screen captures, and thereby helps to actually test Kotti in the
process. blockdiag is used to make flow charts and diagrams interjected into the docs.

Please follow the readme instructions in the Kotti User Manual repo to get set up for contributing to the user manual.
Of course, you can do pull requests that change only the text, but please get set up for working with graphics also,
because this is a way to do the important task of keeping Kotti user docs up-to-date, guaranteed to have graphics in
sync with the latest Kotti version.

The rendered docs are built and hosted on readthedocs.org.

88 Chapter 4. Getting Help / Contributing

https://virtualenvwrapper.readthedocs.io
https://sphinx.readthedocs.io
http://sphinx-doc.org/rest.html
https://kotti-user-manual.readthedocs.io
https://selenium-python.readthedocs.io
http://blockdiag.com
https://github.com/Kotti/kotti_user_manual

CHAPTER 5

Future and Past

5.1 Change History

5.1.1 1.3.1.dev0 - unreleased

• When rendering slot views, use request.blank() to create the request. This is the proper behaviour, in
tune with customizing kotti.request_factory. Also added blank() method to kotti.testing.
DummyRequest.

• When authenticated, show workflow state in the edit bar. Before it was shown only if the ‘edit’ permission was
available.

• Optimize the File edit form: don’t load initial file data to session data and don’t rewrite the file data after saving
the form if that data has not been changed through the edit form.

• Bugfix: when showing addable content in the menu, check if the factory has a defined add_view. This avoids a
hard crash with, for example, a content type derived from Content that has no add_view defined.

• Added nav-bar slot to edit/master.pt, edit-bar and nav-bar slots to view/master.pt

• Bugfix: Simplify 404 page, no longer crash when authenticated

• Change: simplify kotti.util.LinkBase.selected(): use request.view_name instead of deriving the view name from
request.url. Also, consider the View editor bar entry as selected even when the url doesn’t end with a slash ‘/’

• Feature: add Czech translation.

• Switch from oursql``to ``mysqlclient in tests.

• Setup tests on TravisCI with pip install -e .[testing], making requirements.txt obsolete.

• Adjust CLI command tests for new versions of Pyramid / plaster.

• remove pytest-warnings from test dependencies (already integrated in modern pytest versions)

89

Kotti, Release 1.3.0

5.1.2 1.3.0 - 2016-10-10

Breaking Changes

• Upgrade to repoze.workflow==1.0b. If your application has a custom ‘‘workflow.zcml‘‘, it needs
a little modification: ‘‘state‘‘ and ‘‘transition‘‘ titles are no longer ‘‘key‘‘ nodes, but attributes on the
respective ‘‘state‘‘ or ‘‘transition‘‘ nodes. See Kotti’s ‘‘workflow.zcml‘‘ for an example.

Features and Fixes

• Add a fallback in contents.pt when creation_date or modification_date is None.

• Transform workflow state title to TranslationStrings without eval and deprecate it.

• Replace some Python 2 only code with equivalents that also support Python 3.

• Use generic SQLAlchemy type Text as base type for JsonType. This allows SQLAlchemy to map Text type
to the most suitable type available on given database system. Previously used TEXT type is not available in
Oracle database. In case of existing installation of Kotti with database system, for which SQLAlchemy maps
generic Text type to type different than TEXT it’s necessary to either convert existing columns “nodes._acl”
and “nodes.annotations” to that type or configure SQLAlchemy to map generic Text type to existing type of
these two columns. For example of how to do this please see http://stackoverflow.com/a/36506666/95735. For
all database systems for which SQLAlchemy provides dialects except Oracle (Firebird, Microsoft SQL Server,
MySQL, Postgres, SQLite, Sybase) there’s no need to do anything.

• We use PEP 440 normalized form for the project’s version thus current “1.3.0-alpha.5-dev” became
“1.3.0a5.dev0”.

• Upgrade tests to zope.testbrowser>=5.0.0. This removes the mechanize and wsgi_intercept
dependencies and thus the last blocker for Python 3 compatibility.

• Move pytest config from setup.cfg to new pytest.ini. This prevents a deprecation warning with
pytest>=3.0.

• Rename kotti.testing.TestingRootFactory to kotti.testing.RootFactory to prevent an-
other deprecation warning with pytest>=3.0.

5.1.3 1.3.0-alpha.4 - 2015-01-15

This is a alpha release. Blindly upgrading your production environments will make the universe collapse!

• Add a kotti.depot_replace_wsgi_file_wrapper option to replace the WSGI file wrapper with
pyramid.response.FileIter for problematic environments.

5.1.4 1.3.0-alpha.3 - 2016-01-11

This is a alpha release. Blindly upgrading your production environments will make the universe collapse!

• Bugfix: don’t try to get api.root via the lineage if not in a location aware context (for example 404 view). Return
the site root instead.

5.1.5 1.3.0-alpha.2 - 2016-01-05

This is a alpha release. Blindly upgrading your production environments will make the universe collapse!

90 Chapter 5. Future and Past

http://stackoverflow.com/a/36506666/95735

Kotti, Release 1.3.0

• Add a custom traverser, which gets all nodes in a single DB query. For deeply nested trees this results in drastic
performance improvements. See https://kotti.readthedocs.io/en/master/api/kotti.traversal.html for details.

• Bugfix: copy and paste of file nodes wouldn’t create a new depot file, but instead lead to multiple references to
a single file which would cause undesired results when one of them was deleted later.

• Bugfix: local ‘role:owner’ was not set when a new node was created by copy and paste.

• Bugfix: kotti.events._update_children_paths could fail under unclear conditions (at least under Python 2.6 with
SQLite).

• Get rid of more browser doctests (converted to webtest).

5.1.6 1.3.0-alpha.1 - 2015-12-22

This is a alpha release. Blindly upgrading your production environments will make the universe collapse!

• Completely revised Depot integration. See https://kotti.readthedocs.io/en/latest/developing/advanced/blobs.
html for details.

• Make kotti.resources.SaveDataMixin more versatile in that it now supports a data_filters
attribute (or even a completely overridden data attribute) on subclasses. For an example for what this is useful,
see the new kotti_image package’s readme and the Depot documentation (https://depot.readthedocs.io/en/
latest/database.html#custom-behaviour-in-attachments).

These changes require a database migration.

A migration script is included, which can be executed by running kotti-migrate <your.ini>
upgrade_all. However, this script will fail if you subclassed from kotti.resources.Image in your
application. It also doesn’t cover custom classes inherited from kotti.resources.File (other than Kotti’s
Image). Migration of those can be performed easily, by copying the code from the included migration step to
your package’s migration environment and adjust it to your needs.

• Move all image related code to the new kotti_image add on package. All classes and functions are imported
into their former place, so that code that imports from there will still be working.

• Fix broken upload type selector.

• Create RFC6266 compliant content disposition headers for non-ASCII filenames.

• Add request.uploaded_file_response method.

5.1.7 1.2.4 - 2015-11-26

• Fix broken packaging of 1.2.3. Sorry for the inconvenience!

5.1.8 1.2.3 - 2015-11-26

• Add Kotti logo and icon to static assets.

• Use Kotti logo as favicon.

• Move favicon definition to separate template to make it easily overridable.

• Fix permission check in kotti.views.util.nodes_tree.

5.1. Change History 91

https://kotti.readthedocs.io/en/master/api/kotti.traversal.html
https://kotti.readthedocs.io/en/latest/developing/advanced/blobs.html
https://kotti.readthedocs.io/en/latest/developing/advanced/blobs.html
https://depot.readthedocs.io/en/latest/database.html#custom-behaviour-in-attachments
https://depot.readthedocs.io/en/latest/database.html#custom-behaviour-in-attachments

Kotti, Release 1.3.0

5.1.9 1.2.2 - 2015-10-28

• Add simple, default not found view.

• In workflow-dropdown replace hard-coded permission check with individual permission checks for each
existing transition.

• Upgrade requirements.

5.1.10 1.2.1 - 2015-10-07

• Outfactor the code that runs after successful authentication into a configurable kotti.
login_success_callback function.

• Outfactor the code that runs after a valid password reset request into a configurable kotti.
password_reset_callback function.

• Support principal search on non string attributes.

• Support principal searches matching all arguments (i.e. using the and operator, or is still the default).

• Support optional –rev with kotti-migrate upgrade.

5.1.11 1.2.0 - 2015-09-27

• Greatly reduce the number of queries that are sent to the DB: - Add caching for the root node. - Use eager /
joined loading for local_groups. - Don’t query principals for roles

• Add “missing” foreign key indices (with corresponding migration step).

• Add a kotti.modification_date_excludes configuration option. It takes a list of attributes in dotted
name notation that should not trigger an update of modification_date on change. Defaults to kotti.
resources.Node.position.

• Don’t try to set a caching header from the NewRequest handler when Pyramid’s tweens didn’t follow the usual
chain of calls. This fixes compatibility with bowerstatic.

• Don’t assume renderer_name exists in a rendering event (ex. BeforeRender). The official docstring of
pyramid.interfaces.IRenderer is a bit ambigous in regards to what the system parameter should
include when a renderer gets called. This fixes compatibility with pyramid_layout.

• Add a kotti.modification_date_excludes configuration option. It takes a list of attributes in dotted
name notation that should not trigger an update of modification_date on change. Defaults to kotti.
resources.Node.position.

5.1.12 1.1.5 - 2015-09-04

• Fix migration error on MySQL.

• Only wrap methods that do exist on the wrapped type (in kotti.sqla.MutationList / kotti.sqla.
MutationDict). This fixes an error that occurs when MutationLists are exposed to the UI via colander.
SequenceSchema.

• Upgrade requirements to latest versions (filedepot, waitress).

92 Chapter 5. Future and Past

Kotti, Release 1.3.0

5.1.13 1.1.4 - 2015-06-27

• Add compatibility with SQLAlchemy 1.0. Also require SQLAlchemy 1.0.6 now.

• Ignore HTTPForbidden exceptions during slot rendering

5.1.14 1.1.3 - 2015-06-17

• Fix a bug in kotti-migrate that prevented initial migration steps from being run successfully.

• Require kotti_tinymce 0.5.3.

5.1.15 1.1.2 - 2015-06-12

• Enlarge column sizes for name, path and title (see #427). Upgrading from any version older than 1.1.2
requires you to run a migration script on your database. To run the migration, call:

$ bin/kotti-migrate <myconfig.ini> upgrade

• Add length validator for title (fix partially #404). See #428

• Remove 40 chars max length constraint for the html segment name (Kotti.util.title_to_name). See
#428

• Update italian translation

• Update documentation

• Add an add_permission attribute to kotti.resources.TypeInfo with a default value of add. See
#436

• Add a “cancel” button to the delete node view.

5.1.16 1.1.1 2015-05-11

• Update scaffold’s README file. See #417.

• Fix broken multifile upload. See #425.

5.1.17 1.1.0 2015-04-16

• Separate the default actions to a kotti.resources.default_actions variable, to allows easier cus-
tomization of default actions of all content types. This is a LinkParent, you can append new kotti.util.
Link objects to its children.

• Add target option to kotti.util.Link. See #405.

• Add sanitizers. See docs/development/advanced/sanitizers and kotti.sanitizers for de-
tails. This fixes #296.

• Added new document on how to customize the edit interface. See docs/development/advanced/
add-to-edit-interface.

• Make it easier to customize default actions by separating them to a new kotti.resources.
default_actions variable. Before, to customize them, you’d have to change Content.type_info.
edit_links[3].children, now you can mutate default_actions directly. See docs/
development/advanced/add-to-edit-interface for details.

5.1. Change History 93

Kotti, Release 1.3.0

• Upgrade WebOb, html2text, pyramid and xlwt to their latest stable versions.

5.1.18 1.1.0-alpha.1 - 2015-03-19

• Allow moving File and Image blob data from the database to configurable storages. To achieve
this we use filedepot, a third-party library with several plugin storages already built in. See
docs/developing/advanced/blobs.rst for details on what this brings. Upgrading from any version older then
1.1.0 requires you to run a migration script on your database. To run the migration, call:

$ bin/kotti-migrate <myconfig.ini> upgrade

Please note that, before running the migration, you should take the time to read the documentation and configure
your desired storage scheme.

• Allow storing blob data in the database using DBStoredFile and DBFileStorage, a database centered
storage plugin for filedepot. This storage is the default storage for blob data, unless configured otherwise.

• Added a script to migrate blob data between depot storages. See docs/developing/advanced/blobs.rst for details
on how to use it.

• Simplify serving blob data by using kotti.views.file.UploadedFileResponse, which also streams
data. Please note that the default DBStoredFile still needs to load its entire data in memory, to benefit from
this feature you should configure another default depot storage.

• Added three new test fixtures: mock_filedepot, to be used in simple unit tests with no dependency on a
database session, filedepot, which integrates with the dbsession fixture and no_filedepot, a fixture
that can be used in developing tests for new file depot plugins - by preserving the depot configuration before and
after running the test. NOTE: in order to test edit views with uploaded data in the request, you need to mixin the
filedepot fixture.

• Initialize pyramid.paster.logging for custom commands defined via kotti.util.command, to allow log
message output for kotti sessions started via custom commands.

• Remove unused kotti.js.

• Remove deprecated kotti.views.slots.local_navigation and kotti.views.slots.
includeme_local_navigation. Use kotti.views.navigation.local_navigation and
kotti.views.navigation.includeme_local_navigation instead.

• Upgrade plone.scale and SQLAlchemy to their latest stable versions.

• Change height property on body’s widget (RichTextField) for improved usability. See #403.

5.1.19 1.0.0 - 2015-01-20

• No changes.

5.1.20 1.0.0-alpha.4 - 2015-01-29

• Added experimental Docker support. See #374.

• Allow restricting add views to specific contexts. This allows third party developers to register new content types
that are addable in specific type of contexts, by specifying context=SomeContentType in their add view
registration and having type_info.addable=['SomeContentType'] in the type info.

• For documents with duplicate titles that end in a number, append a counter instead of incrementing their number.
Fixes #245

94 Chapter 5. Future and Past

https://pypi.python.org/pypi/filedepot/

Kotti, Release 1.3.0

• Update all requirements (except alembic) to their latest respective versions.

5.1.21 1.0.0-alpha.3 - 2015-01-13

• Explicitly implement pyramid.interfaces.IRequest for kotti.request.Request. This
allows add-on packages to use config.add_request_method (with reify) and config.
add_request_property without breaking the interfaces provided by the request. Fixes #369

5.1.22 1.0.0-alpha.2 - 2015-01-01

• Require kotti_tinymce==0.5.1. This fixes #365.

5.1.23 1.0.0-alpha - 2014-12-20

• Add a new scaffold based on Pyramid’s pcreate. To run the tests for the scaffold, you must invoke py.test
with the --runslow option. This is enabled by default on Travis.

• kotti._resolve_dotted now return a resolved copy of the settings (instead of in place resolving as
before).

• Factor out DBMS specific patches and make them available to the test fixtures.

• Add new fixtures that can also be used in add on tests:

– custom_settings does nothing and is meant to be overridden in add on test suites. It allows injection
of arbitrary key / values into the settings dict used in tests.

– unresolved_settings is guaranteed to only contain unresolved string values (or lists therof).

– settings is now guaranteed to be fully resolved.

– webtest returns a webtest.TestApp instance with support for the @user marker. This should be
used instead of browser doctests for functional tests.

• Use RTD theme for documentation.

• Use latest versions of all requirements. The only upgrade with notable differences is lingua (from 1.4 to 3.6.1).
This completely changes lingua’s API. See docs/developing/basic/translations.rst for details on the greatly sim-
plified new usage.

• Remove code (incl. tests) that has been marked as deprecated since (at least) Kotti 0.8.

• Revise UI to make better use of Bootstrap 3.

• Allow parameters for move-child-position views to either be in request.POST or request.json_body.

• Don’t use Pyramid code that is marked as deprecated:

– replace pyramid.security.authenticated_userid with request.
authenticated_userid.

• Deprecate kotti.security.has_permission to be consistent with the corresponding deprecation in
Pyramid 1.5. You should now use request.has_permission instead.

• Make all values in Node.path end in /. This makes it consistent over all nodes (including root) and correspond
to the values of request.resource_url. As a side effect querying becomes easier. However, this might
need adjustments in your code if you were expecting the old path values before. A migration step for DB
upgrades is included.

5.1. Change History 95

Kotti, Release 1.3.0

5.1.24 0.10b1 - 2014-07-11

• Add a __json__ method to MutationList and MutationDict.

This is to allow Pyramid’s serializer to just work.

5.1.25 0.10a4 - 2014-06-19

• Upgrade Pyramid to version 1.5.1.

5.1.26 0.10a3 - 2014-06-11

• Upgrade SQLAlchemy and alembic dependencies from 0.8.2 and 0.5.0 to 0.9.4 and 0.6.5 respectively.

• Do not flush within Node.path event handlers. We would otherwise trigger object handlers with funny object
states.

• Fix bug with Node.path where we attach a Node instance to a parent that has been loaded from the database,
but its parents have not been loaded yet.

• Fix deprecation warnings with regard to Pyramid’s custom_view_predicates and
set_request_property. Also deprecate kotti.views.util.is_root.

5.1.27 0.10a2 - 2014-06-05

• Add Node.path column. This allows queries based on path, so it’s much easier just to find all children,
grandchildren etc. of a given node:

DBSession.query(Node).filter(Node.path.startswith(mynode.path))

• Adds session attribute to the request attributes to copy to the slot view request.

Migrations

• Upgrading from 0.9.2 to 0.10 requires you to run a migration script on your database. To run the migration, call:

$ bin/kotti-migrate <myconfig.ini> upgrade

Make sure you backup your database before running the migration!

5.1.28 0.10a1 - 2014-05-19

• Kotti is now based on Bootstrap 3 (and therefore Deform 2).

THIS IS A BACKWARD INCOMPATIBLE CHANGE W.R.T. MOST TEMPLATES, INCLUDING FORM
TEMPLATES! IF YOUR PROJECT EITHER HAS TEMPLATE CUSTOMIZATIONS OR DEPENDS ON
ADD-ONS THINGS WILL LOOK BROKEN!

If you only use Kotti’s default UI, chances are good that your application will continue to work well unchanged.
Kotti’s API is mostly unchanged and fully backward compatible though.

• Rework implementation of ‘kotti.util.Link’ (‘ViewLink’) to be more flexible.

There’s now proper support for nesting ‘edit_links’, so that the special ‘action_links’ list is no longer necessary.
Links now also make better use of templates for rendering, and are probably easier to customize overall.

96 Chapter 5. Future and Past

Kotti, Release 1.3.0

• Added compatiblity for and now require Pyramid>=1.5. #273

• In tests, turned settings and setup_app into fixtures to ease overriding.

• Add kotti_context_url JS global variable. For more details on why this is needed see:

– https://github.com/Kotti/kotti_tinymce/issues/19

– https://github.com/Kotti/Kotti/issues/219

– https://github.com/Kotti/kotti_newsitem/issues/2

– https://github.com/Kotti/kotti_calendar/issues/4

• Adds delete permission needed for ‘delete’ and ‘delete_nodes’ views. The default workflow was updated in
consequence. It allows to elaborate more fine grained workflows : for instance, create a role which can edit a
content but not delete it.

To make existent Kotti’s instances using default workflow compatibles and avoid users that have ‘editor’ role
(and so far, whom have the possibility to edit and delete the content) to not be able to delete contents, it’s needed
to reset workflow with “kotti-reset-workflow <application ini file>” command.

• Fix #308: Unique name constraint issue during paste of a cut node.

5.1.29 0.9.2 - 2013-10-15

• Fix #268: Convert None to colander.null in get_appstruct so that serialization doesn’t fail (needed due to recent
changes in colander).

5.1.30 0.9.1 - 2013-09-25

• Allow user admins to modify user passwords.

• Require newer kotti_tinymce (source code editing was broken in 0.4).

5.1.31 0.9 - 2013-09-17

• Add multi file content upload. You can now select several files from your local storage that you want to upload
and chose what content nodes shall be created in your Kotti site. Currently files with MIME types of image/*
can be uploaded and be created as either Image or File nodes, all other MIME types will be created as File.
In future releases (or add-on products) this can be extended with additional converters allowing for example to
upload HTML files and create Document nodes with the content of the title tag becoming the node’s title,
the content of the body tag becoming the node’s body and so on.

• Fix #253: Many translations weren’t included in the last release.

‘–use-fuzzy’ translations when running ‘compile_catalog’ adds back translations that were recently marked as
fuzzy. (All translations that were marked as fuzzy in German were still accurate.)

• Fix #252: Wrap templates where extract_messages failed with <tal:block>

• Fix #249: TinyMCE translations work again.

5.1.32 0.9b2 - 2013-08-20

• Fix #251: Broken comparison of NestedMutationDict and NestedMutationList.

• Update kotti_tinymce to version 4.0.2.

5.1. Change History 97

https://github.com/Kotti/kotti_tinymce/issues/19
https://github.com/Kotti/Kotti/issues/219
https://github.com/Kotti/kotti_newsitem/issues/2
https://github.com/Kotti/kotti_calendar/issues/4

Kotti, Release 1.3.0

• Fix bug in kotti.views.content.FileEditForm to preserve file content while editing it.

5.1.33 0.9b1 - 2013-06-26

• Add kotti.util.ViewLink.visible method for better control over whether a view link should be
visible or not. This allows us to move formerly hardcoded action links defined in kotti.views.edit.
actions into TypeInfo.action_links and thus make them configurable either globally or per content
type.

• kotti.security.view_permitted will now check for pyramid.security.
view_execution_permitted with a request method set to ‘GET’ by default. It used to check for
a view that matches the current request’s method.

This fixes an issue where kotti.util.ViewLink.permitted would by mistake check for a ‘POST’
view when the current request was ‘POST’.

• Add INavigationRoot interface and TemplateAPI.navigation_root property. The latter re-
turns the first content node in the lineage that implements INavigationRoot or the root node if
INavigationRoot is not implemented by any node in the lineage. Make the nav.pt template use api.
navigation_root instead of api.root. This allows third party add-ons to define content types that can
reside somewhere in the content tree while still being the root for the navigation.

• Move navigation related view code to new module kotti.views.navigation. Deprecate imports from
the old locations.

• Remove some code that has been deprecated in 0.6 or 0.7.

• A view assigned to a slot can access the slot name where its rendered.

• Add missing transaction.commit() in kotti-reset-workflow.

• Fix bug in kotti.views.util.render_view where local roles weren’t respected correctly.

• Add helper method kotti.message.send_email for sending general emails. These emails must follow a particular
structure. Look at kotti:templates/email-set-password.pt as an example.

5.1.34 0.9a2 - 2013-05-04

• Fix #222: Use SQLAlchemy’s before_flush event for object events.

We were using the wrong events previously. The problem with before_insert, before_update, and before_delete
was that event handlers could not reliably call Session.add, Session.delete, and change mapped relationships.
But only SQLAlchemy 0.8 started emitting a warning when that was done.

Also deprecated ObjectAfterDelete because I don’t think it’s useful.

• Remove the html5shim from the master templates and use the fanstatic package js.html5shiv instead.

• A temporary fix for #187. Basically suppresses DetachedInstanceError.

• Add kotti.events.subscribe decorator. See the also updated docs on that topic / module for details.

5.1.35 0.9a1 - 2013-03-12

• Fix ordering on how include_me functions are loaded. This puts Kotti’s own and Kotti add-on search paths
in front of deform_bootstrap’s.

• Add image thumbs with preview popovers to @@contents view.

98 Chapter 5. Future and Past

Kotti, Release 1.3.0

• Add drag’n’drop ordering support to @@contents view.

• Add “toggle all” checkbox to @@contents view.

• Add contents path bar to @@contents view.

5.1.36 0.8 - 2013-03-12

• No changes.

5.1.37 0.8b2 - 2013-02-08

• Fix Kotti’s tests to no longer trigger deprecation warnings. Kotti’s funcargs need to be better documented still,
see #141.

• Add a fanstatic.Group ‘tagit’ and need() it in the defered widget. This is needed to make the tags widget render
correctly with a theme package enabled until the defered widget is replaced by a widget class that declares its
requirements in the usual deform style.

• Transform setup_users, setup_user and prefs views into class-based views. Add a little text at sub-
section Security on developer manual mentioning those views.

5.1.38 0.8b1 - 2012-12-30

• No changes

5.1.39 0.8a2 - 2012-12-15

• Remove test related dependencies on requirements.txt. So now we need to run python setup.py dev to get testing
dependencies.

• Update packages versions on requirements.txt for latest working versions.

• Added a tags display in views for documents, files, folders, and images, where they show up as a horizontal list
between description and body.

• Modified general search to include simple tags searching. The default search in Kotti works on a simple search
term matching basis. Tags searching is added here in a simple fashion also, such that you can only search for one
tag at a time, but partial matches work: searching for ‘foo’ finds content tagged ‘foo bar’. You can also search
on single tags by clicking an individual tag in the tags display of an item. More sophisticated tags searching,
just as for general search, is left to dedicated add-ons.

5.1.40 0.8a1 - 2012-11-13

• Make language-dependent URL normalization the default. (How to do this used to be a cookbook entry.)

• Cleanup node edit actions and use decorated view classes.

• Add contents view with actions for multiple items.

• Add children_with_permission method to ContainerMixin.

• Add UI for default_view selection.

• Deprecate ‘kotti.views.edit.generic_add’ and ‘generic_edit’. Just use class-based forms instead.

5.1. Change History 99

Kotti, Release 1.3.0

5.1.41 0.7.2 - 2012-10-02

• Improve installation instructions. Now uses tagged requirements.txt file.

• Added event request POST vars to the request for the slot viewlet.

• Added IFile and IImage interfaces to allow for file and image subclasses to reuse the same view (registrations).

5.1.42 0.7.1 - 2012-08-30

• Add deletion of users to the users management.

• Fix tag support for files and images.

• Upgrade to Twitter Bootstrap 2.1

– remove lots of CSS that is no longer needed

– fix responsive layout that was broken on some phone size screen resolutions

• Add “Site Setup” submenu / remove @@setup view.

5.1.43 0.7 - 2012-08-16

• Fix critical issue with migrations where version number would not be persisted in the Alembic versions table.

5.1.44 0.7rc1 - 2012-08-14

• No changes.

5.1.45 0.7a6 - 2012-08-07

• Fix a bug with connections in the migration script. This would previously cause Postgres to deadlock when
calling kotti-migrate.

5.1.46 0.7a5 - 2012-08-07

• Add workflow support based on repoze.workflow. A simple workflow is included in workflow.zcml
and is active by default. Use kotti.use_workflow = 0 to deactivate. The workflow support adds a
drop-down that allows users with state_change permission to modify the workflow state.

• Change the default layout

Kotti’s new default look is now even closer to the Bootstrap documentation, with the main nav bar at the very
top and the edit bar right below.

Upgrade note: if you have a customized main_template and want to use the recent changes in that template, you
need to swap positions of nav.pt and editor-bar.pt api.render_template calls and remove the
search.pt call from the main_template (it’s now called from within nav.pt). Everything else is completely
optional.

• Add migrations via Alembic. A new script kotti-migrate helps with managing database upgrades of Kotti
and Kotti add-ons. Run kotti-migrate <your.ini> upgrade to upgrade the Kotti database to the
latest version.

Add-on authors should see the kotti.migrate module’s docstring for more details.

100 Chapter 5. Future and Past

Kotti, Release 1.3.0

• Make Document.body searchable (and therefore the search feature actually useful for the first time).

• Add a “minify” command to compress CSS and JS resources.

To use it run:

python setup.py dev
python setup.py minify

The minify command assumes, that all resources are in kotti/static/. YUI compressor is used for
compression and will be automatically installed when running python setup.py dev. However, you still
need a JVM on your development machine to be able to use the minify command.

• Fix settings: only values for kotti* keys should be converted to unicode strings.

• Fix #89: Validate email address for uniqueness when user changes it.

• Fix #91: Styling of search box.

• Fix #104: Make fanstatic resources completely overridable.

• Enabled deferred loading on File.data column.

Migrations

• Upgrading from 0.6 to 0.7 requires you to run a migration script on your database. To run the migration, call:

$ bin/kotti-migrate <myconfig.ini> upgrade

Make sure you backup your database before running the migration!

• Upgrading to 0.7 will initialize workfow state and permissions for all your content objects, unless you’ve over-
written kotti-use_workflow to not use a workflow (use 0) or a custom one.

It is important that sites that have custom permissions, e.g. custom modifications to SITE_ACL, turn off
workflow support prior to running the upgrade script.

5.1.47 0.7a4 - 2012-06-25

• Add minified versions JS/CSS files.

• Fix #88: logging in with email.

• Update translations.

5.1.48 0.7a3 - 2012-06-15

• Include kotti.tinymce which adds plug-ins for image and file upload and content linking to the TinyMCE
rich text editor.

• Slot renderers have been replaced by normal views (or viewlets). kotti.views.slots.register has
been deprecated in favour of kotti.views.slots.assign_slot, which works similarly, but takes a
view name of a registered view instead of a function for registration.

• Switch to fanstatic for static resource management.

Upgrade note: This requires changes to existing *.ini application configuration files. Concretely, you’ll need
to add a filter:fanstatic section and a pipeline:main section and rename an existing app:main
section to app:Kotti or the like. Take a look at Kotti’s own development.ini for an example.

5.1. Change History 101

Kotti, Release 1.3.0

• Retire the undocumented kotti.resources.Setting class and table. kotti.get_settings will
now return registry.settings straight, without looking for persistent overrides in the database.

• Drop support for Pyramid<1.3, since we use pyramid.response.FileResponse, and kotti_tinymce
uses pyramid.view.view_defaults.

• Fix encoding error with non-ascii passwords.

5.1.49 0.7a2 - 2012-06-07

• Do not allow inactive users to reset their password.

5.1.50 0.7a1 - 2012-06-01

Features

• Add a new ‘Image’ content type and image scaling, originally from the kotti_image_gallery add-on. See
kotti.image_scales.* settings.

• Add search and related setting kotti.search_content.

• Add subscriber to set cache headers based on caching rules. See also related setting kotti.
caching_policy_chooser.

• Remove TinyMCE from the core.

• Move email templates into page templates in kotti:templates/email-set-password.pt and
kotti:templates/email-reset-password.pt. This is to make them easier to translate and cus-
tomize. This deprecates kotti.message.send_set_password.

• Add a ‘edit_inhead’ slot for stuff that goes into the edit interface’s head. ‘inhead’ is no longer be used in
‘edit/master.pt’.

• For more details, see also http://danielnouri.org/notes/2012/05/28/kotti-werkpalast-sprint-wrap-up/

Bugs

• Fix bug with group edit views. See https://github.com/Pylons/Kotti/pull/61

• Fix bug where user.last_login_date was not set during automic login after the set password screen.

5.1.51 0.6.3 - 2012-05-08

• Add tag support. All content objects now have tags. They can be added in the UI using the “jQuery UI Tag-it!”
widget. See https://github.com/Pylons/Kotti/pull/55 .

• Fix a bug with file download performance.

5.1.52 0.6.2 - 2012-04-21

• Links in Navigation view lead to node view. Added edit links to view the node’s edit form.

• Hitting ‘Cancel’ now returns to the context node for add/edit views

102 Chapter 5. Future and Past

http://danielnouri.org/notes/2012/05/28/kotti-werkpalast-sprint-wrap-up/
https://github.com/Pylons/Kotti/pull/61
https://github.com/Pylons/Kotti/pull/55

Kotti, Release 1.3.0

5.1.53 0.6.1 - 2012-03-30

• Added button to show/hide nodes from navigation in the order screen.

• The ‘rename’ action now strips slashes out of names. Fixes #53.

• Add Dutch translation.

• Allow translation of TinyMCE’s UI (starting with deform 0.9.5)

• Separated out testing dependencies. Run bin/python setup.py dev to install Kotti with extra depen-
dencies for testing.

• Deprecate ‘kotti.includes’ setting. Use the standard ‘pyramid.includes’ instead.

• Setting ‘Node.__acl__’ to the empty list will now persist the empty list instead of setting ‘None’.

• Let ‘pyramid_deform’ take care of configuring deform with translation dirs and search paths.

5.1.54 0.6.0 - 2012-03-22

• Add Japanese translation.

• Enforce lowercase user names and email with registration and login.

• Moved SQLAlchemy related stuff from kotti.util into kotti.sqla.

• You can also append to ‘Node.__acl__’ now in addition to setting the attribute.

5.1.55 0.6.0b3 - 2012-03-17

• Have the automatic __tablename__ and polymorphic_identity for CamelCase class names use
underscores, so a class ‘MyFancyDocument’ gets a table name of ‘my_fancy_documents’ and a type of
‘my_fancy_document’.

5.1.56 0.6.0b2 - 2012-03-16

• Make the ‘item_type’ attribute of AddForm optional. Fixes #41.

• kotti.util.title_to_name will now return a name with a maximum length of 40. Fixes #31.

5.1.57 0.6.0b1 - 2012-03-15

• Use declarative style instead of class mapper for SQLAlchemy resources.

Unfortunately, this change is backwards incompatible with existing content types (not with existing databases
however). Updating your types to use Declarative is simple. See kotti_calendar for an example: https://github.
com/dnouri/kotti_calendar/commit/509d46bd596ff338e0a88f481339882de72e49e0#diff-1

5.1.58 0.5.2 - 2012-03-10

• A new ‘Actions’ menu makes copy, paste, delete and rename of items more accessible.

• Add German translation.

• Populators no longer need to call transaction.commit() themselves.

5.1. Change History 103

https://github.com/dnouri/kotti_calendar/commit/509d46bd596ff338e0a88f481339882de72e49e0#diff-1
https://github.com/dnouri/kotti_calendar/commit/509d46bd596ff338e0a88f481339882de72e49e0#diff-1

Kotti, Release 1.3.0

5.1.59 0.5.1 - 2012-02-27

• Internationalize user interface. Add Portuguese as the first translation.

• A new ‘Add’ menu in the editor toolbar allows for a more intuitive adding of items in the CMS.

• Refine Node.copy. No longer copy over local roles per default.

5.1.60 0.5.0 - 2012-02-15

• Move Kotti’s default user interface to use Twitter Bootstrap 2.

• Add a new ‘File’ content type.

• Add CSRF protection to some forms.

• Remove Kotti’s FormController in favor of using pyramid_deform.

• Use plone.i18n to normalize titles to URL parts.

• Add a separate navigation screen that replaces the former intelligent breadcrumbs menu.

• Use pyramid_beaker as the default session factory.

• Make kotti.messages.send_set_password a bit more flexible.

5.1.61 0.4.5 - 2012-01-19

• Add ‘kotti.security.has_permission’ which may be used instead of ‘pyramid.security.has_permission’.

The difference is that Kotti’s version will set the “authorization context” to be the context that you pass to
‘has_permission’. The effect is that ‘list_groups’ will return a more correct list of local roles, i.e. the groups in
the given context instead of ‘request.context’.

• Add a template (‘forbidden.pt’) for when user is logged in but still getting HTTPForbidden.

5.1.62 0.4.4 - 2012-01-05

• The “Forbidden View” will no longer redirect clients that don’t accept ‘text/html’ to the login form.

• Fix bug with ‘kotti.site_title’ setting.

5.1.63 0.4.3 - 2011-12-22

• Add ‘kotti.root_factory’ setting which allows the override Kotti’s default Pyramid root factory. Also, make
master templates more robust so that a minimal root with ‘__parent__’ and ‘__name__’ can be rendered.

• The ‘kotti.tests’ was factored out. Tests should now import from ‘kotti.testing’.

5.1.64 0.4.2 - 2011-12-20

• More convenient overrides for add-on packages by better use of ‘config.commit()’.

104 Chapter 5. Future and Past

Kotti, Release 1.3.0

5.1.65 0.4.1 - 2011-12-20

• Modularize Kotti’s Paste App Factory ‘kotti.main’.

• Allow explicit setting of tables that Kotti creates (‘kotti.use_tables’).

5.1.66 0.4.0 - 2011-12-14

• Remove configuration variables ‘kotti.templates.*’ in favour of ‘kotti.asset_overrides’, which uses Pyramid asset
specs and their overrides.

• Remove ‘TemplateAPI.__getitem__’ and instead add ‘TemplateAPI.macro’ which has a similar but less ‘special’
API.

• Factor snippets in ‘kotti/templates/snippets.pt’ out into their own templates. Use ‘api.render_template’ to render
them instead of macros.

5.1.67 0.3.1 - 2011-12-09

• Add ‘keys’ method to mutation dicts (see 0.3.0).

5.1.68 0.3.0 - 2011-11-30

• Replace Node.__annotations__ in favor of an extended Node.annotations.

Node.annotations will attempt to not only recognize changes to subobjects of type dict, it will also handle
list objects transparently. That is, changing arbitrary JSON structures should just work with regard to calling
node.annotations.changed() when the structure was changed.

5.1.69 0.2.10 - 2011-11-22

• ‘api.format_datetime’ now also accepts a timestamp in addition to datetime.

5.1.70 0.2.9 - 2011-11-21

• Remove MANIFEST.in in favour of using ‘setuptools-git’.

5.1.71 0.2.8 - 2011-11-21

• Remove ‘PasteScript’ dependency since that would result in spurious errors when installing Kotti. See http:
//jenkins.danielnouri.org/job/Kotti/42/TOXENV=py27/console

5.1.72 0.2.7 - 2011-11-20

• Add ‘PasteScript’ dependency.

• Fix #11 where ‘python setup.py test’ would look into a hard-coded ‘bin’ directory.

• Structural analysis documentation. (Unfinished; in ‘analysis’ directory during development. Will be moved to
main docs when finished.)

5.1. Change History 105

http://jenkins.danielnouri.org/job/Kotti/42/TOXENV=py27/console
http://jenkins.danielnouri.org/job/Kotti/42/TOXENV=py27/console

Kotti, Release 1.3.0

5.1.73 0.2.6 - 2011-11-17

• Add Node.__annotations__ convenience attribute.

Node.__annotations__ will wrap the annotations dict in such a way that both item and attribute access are
possible. It’ll also record changes to dicts inside dicts and mark the parent __annotations__ attribute as dirty.

• Add a welcome page.

• Delete the demo added in version 0.2.4.

5.1.74 0.2.5 - 2011-11-14

• Add ‘TemplateAPI.render_template’; allow templates to be rendered conveniently from templates.

5.1.75 0.2.4 - 2011-11-13

• Adjust for Pyramid 1.2: INI file, pyramid_tm, Wsgiref server, pcreate and pserve. (MO)

• Add Kotti Demo source and documentation.

5.1.76 0.2.3 - 2011-10-28

• Node.__getitem__ will now also accept a tuple as key.

folder['1', '2'] is the same as folder['1']['2'], just more efficient.

• Added a new cache decorator based on repoze.lru.

5.1.77 0.2.2 - 2011-10-10

• Change the function signature of kotti.authn_policy_factory, kotti.
authz_policy_factory and kotti.session_factory to include all settings from the configuration
file.

5.1.78 0.2.1 - 2011-09-29

• Minor changes to events setup code to ease usage in tests.

5.1.79 0.2 - 2011-09-16

• No changes.

5.1.80 0.2a2 - 2011-09-05

• Fix templates to be compatible with Chameleon 2. Also, require Chameleon>=2.

• Require pyramid>=1.2. Also, enable pyramid_debugtoolbar for development.ini profile.

106 Chapter 5. Future and Past

Kotti, Release 1.3.0

5.1.81 0.2a1 - 2011-08-29

• Improve database schema for Nodes. Split Node class into Node and Content.

This change is backward incompatible in that existing content types in your code will need to subclass Content
instead of Node. The example in the docs has been updated. Also, the underlying database schema has changed.

• Improve user database hashing and local roles storage.

• Compatibility fix for Pyramid 1.2.

5.1. Change History 107

Kotti, Release 1.3.0

108 Chapter 5. Future and Past

Python Module Index

k
kotti, 51
kotti.events, 51
kotti.fanstatic, 54
kotti.filedepot, 63
kotti.interfaces, 55
kotti.message, 55
kotti.migrate, 56
kotti.populate, 57
kotti.request, 57
kotti.resources, 57
kotti.sanitizers, 66
kotti.security, 67
kotti.sqla, 69
kotti.testing, 70
kotti.tests, 71
kotti.traversal, 73
kotti.util, 74
kotti.views, 75
kotti.views.cache, 75
kotti.views.edit, 75
kotti.views.edit.actions, 75
kotti.views.edit.content, 78
kotti.views.edit.default_views, 78
kotti.views.file, 78
kotti.views.form, 79
kotti.views.login, 80
kotti.views.site_setup, 82
kotti.views.slots, 82
kotti.views.users, 83
kotti.views.util, 83
kotti.views.view, 84
kotti.workflow, 85

109

Kotti, Release 1.3.0

110 Python Module Index

Index

A
AbstractPrincipals (class in kotti.security), 67
actions() (in module kotti.views.edit.actions), 78
add() (kotti.fanstatic.NeededGroup method), 54
add_selectable_default_view() (kotti.resources.TypeInfo

method), 60
addable() (kotti.resources.TypeInfo method), 60
AddFormView (class in kotti.views.form), 80
annotations (kotti.resources.Node attribute), 59
assign_slot() (in module kotti.views.slots), 82

B
back() (kotti.views.edit.actions.NodeActions method), 75
BaseFormView (class in kotti.views.form), 79
BaseView (class in kotti.views), 75
body (kotti.resources.Document attribute), 62
breadcrumbs (kotti.views.util.TemplateAPI attribute), 84
browser() (in module kotti.tests), 72

C
camel_case_to_name() (in module kotti.util), 74
change_state() (kotti.views.edit.actions.NodeActions

method), 77
children_with_permission()

(kotti.resources.ContainerMixin method),
58

cleanup_user_groups() (in module kotti.events), 54
close() (kotti.filedepot.DBStoredFile static method), 64
closed() (kotti.filedepot.DBStoredFile static method), 64
config() (in module kotti.tests), 72
connection() (in module kotti.tests), 72
ContainerMixin (class in kotti.resources), 58
Content (class in kotti.resources), 61
content() (in module kotti.tests), 72
content_id (kotti.resources.TagsToContents attribute), 61
content_length (kotti.filedepot.DBStoredFile attribute),

64
content_type (kotti.filedepot.DBStoredFile attribute), 64

content_type_factories() (in module
kotti.views.edit.actions), 77

contents() (in module kotti.views.edit.actions), 77
contents_buttons() (in module kotti.views.edit.actions),

77
continue_to (kotti.views.login.SetPasswordSchema at-

tribute), 81
copy() (kotti.resources.Node method), 59
copy() (kotti.resources.SaveDataMixin method), 62
copy() (kotti.resources.TypeInfo method), 60
copy_node() (kotti.views.edit.actions.NodeActions

method), 76
create() (kotti.filedepot.DBFileStorage method), 63
creation_date (kotti.resources.Content attribute), 62
custom_settings() (in module kotti.tests), 72
cut_nodes() (kotti.views.edit.actions.NodeActions

method), 76

D
data (kotti.filedepot.DBStoredFile attribute), 64
db_session() (in module kotti.tests), 72
DBFileStorage (class in kotti.filedepot), 63
DBStoredFile (class in kotti.filedepot), 64
default_view (kotti.resources.Content attribute), 61
DefaultRootCache (class in kotti.resources), 63
delete() (kotti.filedepot.DBFileStorage method), 63
delete_node() (kotti.views.edit.actions.NodeActions

method), 77
delete_nodes() (kotti.views.edit.actions.NodeActions

method), 77
delete_orphaned_tags() (in module kotti.events), 54
depot_tween() (in module kotti.tests), 72
description (kotti.resources.Content attribute), 61
Dispatcher (class in kotti.events), 52
DispatcherDict (class in kotti.events), 52
Document (class in kotti.resources), 62
down() (kotti.views.edit.actions.NodeActions method),

76
dummy_request() (in module kotti.tests), 72

111

Kotti, Release 1.3.0

E
EditFormView (class in kotti.views.form), 79
email (kotti.views.login.SetPasswordSchema attribute),

81
events() (in module kotti.tests), 72
exists() (kotti.filedepot.DBFileStorage method), 63
extract_depot_settings() (in module kotti.filedepot), 65
extract_from_settings() (in module kotti.util), 74

F
factory (kotti.security.Principals attribute), 68
File (class in kotti.resources), 63
file_id (kotti.filedepot.DBStoredFile attribute), 64
filedepot() (in module kotti.tests), 72
filename (kotti.filedepot.DBStoredFile attribute), 64
filename (kotti.resources.SaveDataMixin attribute), 62
FileUploadTempStore (class in kotti.views.form), 80
forbidden_redirect() (in module kotti.views.login), 81
forbidden_view() (in module kotti.views.login), 81
forbidden_view_html() (in module kotti.views.login), 82
Form (class in kotti.views.form), 79
form_class (kotti.views.form.BaseFormView attribute),

79
from_field_storage() (kotti.resources.SaveDataMixin

class method), 62

G
get() (kotti.filedepot.DBFileStorage static method), 64
get_root() (in module kotti.resources), 63
get_root() (kotti.resources.DefaultRootCache method),

63
group_name (kotti.resources.LocalGroup attribute), 59

H
has_permission() (in module kotti.security), 67
has_permission() (kotti.request.Request method), 57
has_permission() (kotti.views.util.TemplateAPI method),

84
hash_password() (kotti.security.AbstractPrincipals

method), 67
hide() (kotti.views.edit.actions.NodeActions method), 76

I
IContent (interface in kotti.interfaces), 55
id (kotti.filedepot.DBStoredFile attribute), 64
id (kotti.resources.Content attribute), 61
id (kotti.resources.Document attribute), 62
id (kotti.resources.File attribute), 63
id (kotti.resources.LocalGroup attribute), 59
id (kotti.resources.Node attribute), 59
id (kotti.resources.Tag attribute), 60
IDefaultWorkflow (interface in kotti.interfaces), 55
IDocument (interface in kotti.interfaces), 55

IFile (interface in kotti.interfaces), 55
image_asset() (in module kotti.tests), 71
image_asset2() (in module kotti.tests), 71
impl (kotti.sqla.JsonType attribute), 69
in_navigation (kotti.resources.Content attribute), 61
INavigationRoot (interface in kotti.interfaces), 55
include_testing_view() (in module kotti.testing), 70
includeme() (in module kotti), 51
includeme() (in module kotti.events), 54
includeme() (in module kotti.filedepot), 65
includeme() (in module kotti.sanitizers), 66
includeme() (in module kotti.traversal), 73
includeme() (in module kotti.views), 75
includeme() (in module kotti.views.cache), 75
includeme() (in module kotti.views.edit), 75
includeme() (in module kotti.views.edit.actions), 78
includeme() (in module kotti.views.edit.content), 78
includeme() (in module kotti.views.edit.default_views),

78
includeme() (in module kotti.views.file), 78
includeme() (in module kotti.views.login), 82
includeme() (in module kotti.views.users), 83
includeme() (in module kotti.views.view), 84
includeme_layout() (in module kotti.testing), 70
includeme_login() (in module kotti.testing), 70
INode (interface in kotti.interfaces), 55
inside() (kotti.views.util.TemplateAPI static method), 84
is_location() (kotti.views.util.TemplateAPI static

method), 83
is_uploadable_mimetype() (kotti.resources.TypeInfo

method), 60
items (kotti.resources.Tag attribute), 61

J
JsonType (class in kotti.sqla), 69

K
keys() (kotti.resources.ContainerMixin method), 58
keys() (kotti.security.AbstractPrincipals method), 67
kotti (module), 51
kotti.events (module), 51
kotti.fanstatic (module), 54
kotti.filedepot (module), 63
kotti.interfaces (module), 55
kotti.message (module), 55
kotti.migrate (module), 56
kotti.populate (module), 57
kotti.request (module), 57
kotti.resources (module), 57
kotti.sanitizers (module), 66
kotti.security (module), 67
kotti.sqla (module), 69
kotti.testing (module), 70
kotti.tests (module), 71

112 Index

Kotti, Release 1.3.0

kotti.traversal (module), 73
kotti.util (module), 74
kotti.views (module), 75
kotti.views.cache (module), 75
kotti.views.edit (module), 75
kotti.views.edit.actions (module), 75
kotti.views.edit.content (module), 78
kotti.views.edit.default_views (module), 78
kotti.views.file (module), 78
kotti.views.form (module), 79
kotti.views.login (module), 80
kotti.views.site_setup (module), 82
kotti.views.slots (module), 82
kotti.views.users (module), 83
kotti.views.util (module), 83
kotti.views.view (module), 84
kotti.workflow (module), 85

L
language (kotti.resources.Content attribute), 61
last_modified (kotti.filedepot.DBStoredFile attribute), 64
lineage (kotti.views.util.TemplateAPI attribute), 84
LinkParent (class in kotti.util), 74
LinkRenderer (class in kotti.util), 74
list_groups() (in module kotti.security), 68
list_groups_callback() (in module kotti.security), 68
LocalGroup (class in kotti.resources), 59
login() (in module kotti.views.login), 81
login_success_callback() (in module kotti.views.login),

80
logout() (in module kotti.views.login), 81

M
mime_type (kotti.resources.Document attribute), 62
mimetype (kotti.resources.SaveDataMixin attribute), 62
minimal_html() (in module kotti.sanitizers), 66
mock_filedepot() (in module kotti.tests), 72
modification_date (kotti.resources.Content attribute), 62
move() (kotti.views.edit.actions.NodeActions method),

76
move_child_position() (in module

kotti.views.edit.actions), 78
MutationDict (class in kotti.sqla), 69

N
name (kotti.filedepot.DBStoredFile attribute), 64
name (kotti.resources.Node attribute), 59
name_pattern_validator() (in module kotti.views.users),

83
navigation_root (kotti.views.util.TemplateAPI attribute),

84
NeededGroup (class in kotti.fanstatic), 54
no_filedepots() (in module kotti.tests), 72
no_html() (in module kotti.sanitizers), 66

Node (class in kotti.resources), 59
node_id (kotti.resources.LocalGroup attribute), 59
NodeActions (class in kotti.views.edit.actions), 75
NodeTreeTraverser (class in kotti.traversal), 73

O
ObjectAfterDelete (class in kotti.events), 52
ObjectDelete (class in kotti.events), 52
ObjectEvent (class in kotti.events), 52
ObjectEventDispatcher (class in kotti.events), 53
ObjectInsert (class in kotti.events), 52
ObjectType (class in kotti.views.form), 79
ObjectUpdate (class in kotti.events), 52
owner (kotti.resources.Content attribute), 61

P
page_title (kotti.views.util.TemplateAPI attribute), 83
parent_id (kotti.resources.Node attribute), 59
password (kotti.views.login.SetPasswordSchema at-

tribute), 81
paste_nodes() (kotti.views.edit.actions.NodeActions

method), 76
path (kotti.resources.Node attribute), 59
populate() (in module kotti.populate), 57
populate_users() (in module kotti.populate), 57
position (kotti.resources.Node attribute), 59
position (kotti.resources.TagsToContents attribute), 61
Principal (class in kotti.security), 67
principal_name (kotti.resources.LocalGroup attribute), 59
Principals (class in kotti.security), 68
principals_with_local_roles() (in module kotti.security),

68

R
read() (kotti.filedepot.DBStoredFile method), 65
rename_node() (kotti.views.edit.actions.NodeActions

method), 77
rename_nodes() (kotti.views.edit.actions.NodeActions

method), 77
replace() (kotti.filedepot.DBFileStorage method), 64
Request (class in kotti.request), 57
reset_content_owner() (in module kotti.events), 54
reset_password_callback() (in module kotti.views.login),

80
root (kotti.views.util.TemplateAPI attribute), 84
root() (in module kotti.tests), 72
root_id (kotti.resources.DefaultRootCache attribute), 63

S
sanitize() (in module kotti.sanitizers), 66
sanitize() (kotti.views.util.TemplateAPI static method),

84
SaveDataMixin (class in kotti.resources), 62
search() (kotti.security.AbstractPrincipals method), 67

Index 113

Kotti, Release 1.3.0

search() (kotti.security.Principals method), 68
seek() (kotti.filedepot.DBStoredFile method), 65
seekable() (kotti.filedepot.DBStoredFile static method),

65
send_email() (in module kotti.message), 56
set_creation_date() (in module kotti.events), 53
set_groups() (in module kotti.security), 68
set_max_age() (in module kotti.views.cache), 75
set_metadata() (in module kotti.filedepot), 65
set_modification_date() (in module kotti.events), 53
set_owner() (in module kotti.events), 53
set_password() (in module kotti.views.login), 81
set_visibility() (kotti.views.edit.actions.NodeActions

method), 76
SetPasswordSchema (class in kotti.views.login), 81
show() (kotti.views.edit.actions.NodeActions method),

76
site_title (kotti.views.util.TemplateAPI attribute), 83
size (kotti.resources.SaveDataMixin attribute), 62
state (kotti.resources.Content attribute), 61
StoredFileResponse (class in kotti.filedepot), 65
subscribe (class in kotti.events), 54

T
Tag (class in kotti.resources), 60
tag (kotti.resources.TagsToContents attribute), 61
tag_id (kotti.resources.TagsToContents attribute), 61
tags (kotti.resources.Content attribute), 62
TagsToContents (class in kotti.resources), 61
tell() (kotti.filedepot.DBStoredFile method), 65
TemplateAPI (class in kotti.views.util), 83
title (kotti.resources.Node attribute), 59
title (kotti.resources.Tag attribute), 61
title (kotti.resources.TagsToContents attribute), 61
title_to_name() (in module kotti.util), 74
token (kotti.views.login.SetPasswordSchema attribute),

81
traverse() (kotti.traversal.NodeTreeTraverser static

method), 73
TweenFactory (class in kotti.filedepot), 65
type (kotti.resources.Node attribute), 59
type_info (kotti.resources.Content attribute), 61
type_info (kotti.resources.Document attribute), 62
TypeInfo (class in kotti.resources), 59

U
up() (kotti.views.edit.actions.NodeActions method), 76
url() (kotti.views.util.TemplateAPI method), 83
user (kotti.request.Request attribute), 57
UserDeleted (class in kotti.events), 52
UserSelfRegistered (class in kotti.views.login), 80

V
validate_file_size_limit() (in module kotti.views.form),

80
validate_password() (kotti.security.AbstractPrincipals

method), 68
validate_token() (in module kotti.message), 55
view_content_default() (in module kotti.views.view), 84

W
wire_sqlalchemy() (in module kotti.events), 54
workflow() (in module kotti.tests), 72
workflow() (in module kotti.views.edit.actions), 78
workflow_change() (kotti.views.edit.actions.NodeActions

method), 75
writable() (kotti.filedepot.DBStoredFile static method),

65

X
xss_protection() (in module kotti.sanitizers), 66

114 Index

	First Steps
	Overview
	Installation
	Tutorial

	Narrative Documentation
	Basic Topics
	Advanced Topics

	API
	API Documentation

	Getting Help / Contributing
	Getting Help
	Contributing

	Future and Past
	Change History

	Python Module Index

