
Kotti Documentation
Release 0.2.4

Daniel Nouri

November 24, 2014

Contents

1 Features 3
1.1 Try it out . 3
1.2 Under the hood . 3

2 Installation 5
2.1 Requirements . 5
2.2 Installation using virtualenv . 5

3 Configuration and customization 7
3.1 INI File . 7
3.2 Overview of settings . 7
3.3 kotti.secret and kotti.secret2 . 8
3.4 Adjusting the look & feel with kotti.override_assets . 8
3.5 Using add-ons . 9
3.6 Configuring authentication and authorization . 10
3.7 Sessions . 10

4 Writing add-ons 11
4.1 Content types . 11
4.2 Configuring custom views, subscribers and more . 12
4.3 kotti.views.slots . 12
4.4 kotti.events . 13
4.5 kotti.configurators . 13
4.6 Security . 13

5 Contact us 15

6 Tests 17

7 API 19
7.1 API Documentation . 19
7.2 Indices and tables . 20

Python Module Index 21

i

ii

Kotti Documentation, Release 0.2.4

Authors Daniel Nouri, Mike Orr

Kotti is a light-weight, user-friendly and extensible web content management system. It is licensed under a BSD-like
license

Contents 1

http://repoze.org/license.html
http://repoze.org/license.html

Kotti Documentation, Release 0.2.4

2 Contents

CHAPTER 1

Features

• User-friendly: a simple edit interface hides advanced functionality from less experienced users

• WYSIWYG editor: includes a rich text editor that lets you edit content like in office applications

• Security: advanced user, groups and user roles management; uses access control lists (ACL) to control access
to different parts of the site

• Templating: extend Kotti with your own look & feel with very little programming required

• Customizable: Many aspects of Kotti are configured through a simple INI file

• Add-ons: a plug-in system allows third party software to greatly extend Kotti

• Pluggable authentication: allows authentication of users through LDAP or other existing user databases

• Open: built on top of well-documented, open source components, such as Python, Pyramid and SQLAlchemy

• Tested: continuous testing with a test coverage of 100% guarantees Kotti’s stability

1.1 Try it out

You can try out Kotti on Kotti’s demo site.

1.2 Under the hood

Kotti is written in Python and builds upon on the two excellent libraries Pyramid and SQLAlchemy. Kotti tries to
leverage these libraries as much as possible, thus:

• minimizing the amount of code and extra concepts, and

• allowing users familiar with Pyramid and SQLAlchemy to feel right at home since Kotti’s API is mostly that of
Pyramid and SQLAlchemy.

3

http://en.wikipedia.org/wiki/Access_control_list
http://www.python.org/
http://docs.pylonsproject.org/projects/pyramid/dev/
http://www.sqlalchemy.org/
http://jenkins.danielnouri.org/job/Kotti/
http://kottidemo.danielnouri.org/
http://www.python.org/
http://docs.pylonsproject.org/projects/pyramid/dev/
http://www.sqlalchemy.org/

Kotti Documentation, Release 0.2.4

4 Chapter 1. Features

CHAPTER 2

Installation

2.1 Requirements

• Runs on Python versions 2.5, 2.6 and 2.7.

• Support for PostgreSQL and SQLite (tested continuously), and a list of other SQL databases (not tested regu-
larly)

• Support for WSGI and a variety of web servers, including Apache

2.2 Installation using virtualenv

It’s recommended to install Kotti inside a virtualenv:

virtualenv mysite --no-site-packages
cd mysite
bin/pip install Kotti

Kotti uses Paste Deploy for configuration and deployment. An example configuration file is included with Kotti’s
source distribution:

wget https://github.com/Pylons/Kotti/raw/master/development.ini

Finally, to run the application:

bin/paster serve development.ini

Should the bin/paster script not be available in your environment, install it first using bin/pip install
PasteScript.

5

http://www.sqlalchemy.org/docs/core/engines.html#supported-databases
http://wsgi.org/wsgi/Servers
http://pypi.python.org/pypi/virtualenv
http://pythonpaste.org/deploy/#the-config-file

Kotti Documentation, Release 0.2.4

6 Chapter 2. Installation

CHAPTER 3

Configuration and customization

3.1 INI File

Kotti is configured using an INI configuration file. The installation section explains how to get hold of a sample
configuration file. The [app:main] section in it might look like this:

[app:main]
use = egg:Kotti
pyramid.reload_templates = true
pyramid.debug_authorization = false
pyramid.debug_notfound = false
pyramid.debug_routematch = false
pyramid.debug_templates = true
pyramid.default_locale_name = en
pyramid.includes = pyramid_debugtoolbar

pyramid_tm
mail.default_sender = yourname@yourhost
sqlalchemy.url = sqlite:///%(here)s/Kotti.db
kotti.site_title = Kotti
kotti.secret = changethis1

Various aspects of your site can be changed right here.

3.2 Overview of settings

This table provides an overview of available settings. All these settings must go into the [app:main] section of
your Paste Deploy configuration file.

7

Kotti Documentation, Release 0.2.4

Setting Description
kotti.site_title The title of your site
kotti.secret Secret token used as initial admin password
kotti.secret2 Secret token used for email password reset token
sqlalchemy.url SQLAlchemy database URL
mail.default_sender Sender address for outgoing email
mail.host Email host to send from
kotti.includes List of Python configuration hooks
kotti.available_types List of active content types
kotti.base_includes List of base Python configuration hooks
kotti.configurators List of advanced functions for config
kotti.populators List of functions to fill initial database
kotti.templates.api Override api used by all templates
kotti.asset_overrides Override Kotti’s templates, CSS files and images.
kotti.authn_policy_factory Component used for authentication
kotti.authz_policy_factory Component used for authorization
kotti.session_factory Component used for sessions
kotti.date_format Date format to use, default: medium
kotti.datetime_format Datetime format to use, default: medium
kotti.time_format Time format to use, default: medium

Only the settings in bold letters required. The rest has defaults.

3.3 kotti.secret and kotti.secret2

The value of kotti.secret will define the initial password of the admin user. This is the initial user that Kotti
creates in the user database. So if you put mysecret here, use mysecret as the password when you log in as admin.
You may then change the admin user’s password through the web interface.

The kotti.secret token is also used for signing browser session cookies.

The kotti.secret2 token is used for signing the password reset token.

Here’s an example. Make sure you use different values though!

kotti.secret = myadminspassword
kotti.secret2 = $2a$12$VVpW/i1MA2wUUIUHwY6v8O

3.4 Adjusting the look & feel with kotti.override_assets

In your settings file, set kotti.override_assets to a list of asset specifications. This allows you to set up a
directory in your package that will mirror Kotti’s own and that allows you to override Kotti’s templates, CSS files and
images on a case by case basis.

As an example, image that we wanted to override Kotti’s master layout template. Inside the Kotti source, the layout
template is at kotti/templates/view/master.pt. To override this, we would add a directory to our own
package called kotti-overrides and therein put our own version of the template so that the full path to our own
custom template is mypackage/kotti-overrides/templates/view/master.pt.

We can then register our kotti-overrides directory by use of the kotti.asset_overrides setting, like so:

kotti.asset_overrides = mypackage:kotti-overrides/

8 Chapter 3. Configuration and customization

http://www.sqlalchemy.org/docs/core/engines.html#database-urls

Kotti Documentation, Release 0.2.4

3.5 Using add-ons

Add-ons will usually include in their installation instructions which settings one should modify to activate them.
Configuration settings that are used to activate add-ons are:

• kotti.includes

• kotti.available_types

• kotti.base_includes

• kotti.configurators

3.5.1 kotti.includes

kotti.includes defines a list of hooks that will be called by Kotti when it starts up. This gives the opportunity to
third party packages to add registrations to the Pyramid Configurator API in order to configure views and more.

As an example, we’ll add the kotti_twitter extension to add a Twitter profile widget to the right column of all pages.
First we install the package from PyPI:

bin/pip install kotti_twitter

Then we activate the add-on in our site by editing the kotti.includes setting in the [app:main] section of our
INI file. (If a line with kotti.includes does not exist, add it.)

kotti.includes = kotti_twitter.include_profile_widget

kotti_twitter also asks us to configure the Twitter widget itself, so we add some more lines right where we were:

kotti_twitter.profile_widget.user = dnouri
kotti_twitter.profile_widget.loop = true

The order in which the includes are listed matters. For example, when you add two slots on the right hand side, the
order in which you list them here will control the order in which they will appear.

With this configuration, the search widget is displayed on top of the profile widget:

kotti.includes =
kotti_twitter.include_search_widget
kotti_twitter.include_profile_widget

3.5.2 kotti.available_types

The kotti.available_types setting defines the list of content types available. The default configuration here
is:

kotti.available_types = kotti.resources.Document

An example that adds two content types:

kotti.available_types =
kotti.resources.Document
mypackage.resources.Calendar
mypackage.resources.Event

3.5. Using add-ons 9

http://docs.pylonsproject.org/projects/pyramid/dev/api/config.html
http://pypi.python.org/pypi/kotti_twitter

Kotti Documentation, Release 0.2.4

3.6 Configuring authentication and authorization

You can override the authentication and authorization policy that Kotti uses. By default, Kotti uses these factories:

kotti.authn_policy_factory = kotti.authtkt_factory
kotti.authz_policy_factory = kotti.acl_factory

These settings correspond to pyramid.authentication.AuthTktAuthenticationPolicy and pyra-
mid.authorization.ACLAuthorizationPolicy being used.

3.7 Sessions

The kotti.session_factory configuration variable allows the overriding of the default session factory, which
is pyramid.session.UnencryptedCookieSessionFactoryConfig.

10 Chapter 3. Configuration and customization

http://docs.pylonsproject.org/projects/pyramid/dev/api/authentication.html
http://docs.pylonsproject.org/projects/pyramid/dev/api/authorization.html
http://docs.pylonsproject.org/projects/pyramid/dev/api/authorization.html
http://docs.pylonsproject.org/projects/pyramid/dev/api/session.html

CHAPTER 4

Writing add-ons

4.1 Content types

Defining your own content types is easy. The implementation of the Document content type serves as an example
here:

class Document(Content):
type_info = Content.type_info.copy(

name=u’Document’,
add_view=u’add_document’,
addable_to=[u’Document’],
)

def __init__(self, body=u"", mime_type=’text/html’, **kwargs):
super(Document, self).__init__(**kwargs)
self.body = body
self.mime_type = mime_type

documents = Table(’documents’, metadata,
Column(’id’, Integer, ForeignKey(’contents.id’), primary_key=True),
Column(’body’, UnicodeText()),
Column(’mime_type’, String(30)),

)

mapper(Document, documents, inherits=Content, polymorphic_identity=’document’)

You can configure the list of active content types in Kotti by modifying the kotti.available_types setting.

4.1.1 Using kotti.populators to create your own root object

If you were to totally customize Kotti, and not even include the stock Document type, you would need to follow
the template provided by Document, with some attention to detail for configuration and for instantiating a resource
hierarchy, especially the root object. For example, let’s say that you replace Document with a custom type called
Project (updating available types configuration as needed). In your design, under the Project custom type, you might
have a hierarchy of other types, the relationships determined by how the type_info.addable_to setup is done, and how
the parent property is set for each record on instantiation. When you instantiate the root Project object, the code in the
populate() method of resources.py would be something like:

root = Project(name="", title="Mother Project", propertyOne="Something", parent=None)

NOTE: So, the details are that the root object must have an empty name (name=””) and the parent is None.

11

Kotti Documentation, Release 0.2.4

4.2 Configuring custom views, subscribers and more

kotti.includes allows you to hook includeme functions that configure your custom views, subscribers and more. An
includeme function takes the Pyramid Configurator API object as its sole argument. An example:

def my_view(request):
from pyramid.response import Response
return Response(’OK’)

def includeme(config):
config.add_view(my_view)

By adding the dotted name string of your includeme function to the kotti.includes setting, you ask Kotti to call it
on application start-up. An example:

kotti.includes = mypackage.views.includeme

4.3 kotti.views.slots

This module allows add-ons to register renderers that add pieces of HTML to the overall page. In other systems, these
are called portlets or viewlets.

A simple example that’ll render Hello, World! in in the left column of every page:

def render_hello(context, request):
return u’Hello, World!’

from kotti.views.slots import register
from kotti.views.slots import RenderLeftSlot
register(RenderLeftSlot, None, render_hello)

Slot renderers may also return None to indicate that they don’t want to include anything. We can change our
render_hello function to include a message only when the context is the root object:

from kotti.resources import get_root
def render_hello(context, request):

if context == get_root():
return u’Hello, World!’

The second argument to kotti.views.slots.register() allows you to filter on context. These two are
equivalent:

from kotti.views.slots import RenderRightSlot
from mypackage.resources import Calendar

def render_agenda1(context, request):
if isinstance(context, Calendar):

return ’<div>...</div>’
register(RenderRightSlot, None, render_agenda1)

def render_agenda2(context, request):
return ’<div>...</div>’

register(RenderRightSlot, Calendar, render_agenda2)

Usually you’ll want to call kotti.views.slots.register() inside an includeme function and not on a
module level, to allow users of your package to include your slot renderers through the kotti.includes configu-
ration setting.

12 Chapter 4. Writing add-ons

http://docs.pylonsproject.org/projects/pyramid/dev/api/config.html

Kotti Documentation, Release 0.2.4

4.4 kotti.events

This module includes a simple events system that allows users to subscribe to specific events, and more particularly to
object events of specific object types.

To subscribe to any event, write:

def all_events_handler(event):
print event

kotti.events.listeners[object].append(all_events_handler)

To subscribe only to ObjectInsert events of Document types, write:

def document_insert_handler(event):
print event.object, event.request

kotti.events.objectevent_listeners[(ObjectInsert, Document)].append(
document_insert_handler)

Events of type ObjectEvent have object and request attributes. event.request may be None when no
request is available.

Notifying listeners of an event is as simple as calling the listeners_notify function:

from kotti events import listeners
listeners.notify(MyFunnyEvent())

Listeners are generally called in the order in which they are registered.

4.5 kotti.configurators

Requiring users of your package to set all the configuration settings by hand in the Paste Deploy INI file is not ideal.
That’s why Kotti includes a configuration variable through which extending packages can set all other INI settings
through Python. Here’s an example of a function that programmatically modified kotti.base_includes and
kotti_principals which would otherwise be configured by hand in the INI file:

in mypackage/__init__.py
def kotti_configure(config):

config[’kotti.base_includes’] += ’ mypackage.views’
config[’kotti.principals’] = ’mypackage.security.principals’

And this is how your users would hook it up in their INI file:

kotti.configurators = mypackage.kotti_configure

4.6 Security

Kotti builds mostly on Pyramid’s security API and uses its inherited access control lists support. On top of that,
Kotti defines roles and groups support: Users may be collected in groups, and groups may be given roles that define
permissions.

The site root’s ACL defines the default mapping of roles to their permissions:

root.__acl__ == [
[’Allow’, ’system.Everyone’, [’view’]],
[’Allow’, ’role:viewer’, [’view’]],

4.4. kotti.events 13

http://docs.pylonsproject.org/projects/pyramid/dev/api/security.html
http://www.pylonsproject.org/projects/pyramid/dev/narr/security.html#acl-inheritance-and-location-awareness

Kotti Documentation, Release 0.2.4

[’Allow’, ’role:editor’, [’view’, ’add’, ’edit’]],
[’Allow’, ’role:owner’, [’view’, ’add’, ’edit’, ’manage’]],
]

Every Node object has an __acl__ attribute, allowing the definition of localized row-level security.

The kotti.security.set_groups() function allows assigning roles and groups to users in a given context.
kotti.security.list_groups() allows one to list the groups of a given user. You may also set the list of
groups globally on principal objects, which are of type kotti.security.Principal.

Kotti delegates adding, deleting and search of user objects to an interface it calls
kotti.security.AbstractPrincipals. You can configure Kotti to use a different Principals
implementation by pointing the kotti.principals_factory configuration setting to a different factory. The
default setting here is:

kotti.principals_factory = kotti.security.principals_factory

14 Chapter 4. Writing add-ons

CHAPTER 5

Contact us

Kotti itself is developed on Github. The issue tracker also lives there.

Have a question or a suggestion? Write to Kotti’s mailing list or find us on IRC on irc.freenode.net in channel #kotti.

15

https://github.com/Pylons/Kotti
https://github.com/Pylons/Kotti/issues
http://groups.google.com/group/kotti

Kotti Documentation, Release 0.2.4

16 Chapter 5. Contact us

CHAPTER 6

Tests

To run Kotti’s automated test suite, do:

bin/py.test

Or alternatively:

bin/python setup.py test

You can also run the tests against a different database using the KOTTI_TEST_DB_STRING environment variable.
By default, Kotti uses an in-memory SQLite database. An example:

KOTTI_TEST_DB_STRING=postgresql://kotti:kotti@localhost:5432/kotti-testing bin/python setup.py test

Important: Never use this feature against a production database. It will destroy your data.

17

Kotti Documentation, Release 0.2.4

18 Chapter 6. Tests

CHAPTER 7

API

7.1 API Documentation

7.1.1 kotti.security

kotti.security.set_groups(name, context, groups_to_set=())
Set the list of groups for principal with given name and in given context.

kotti.security.list_groups(name, context=None)
List groups for principal with a given name.

The optional context argument may be passed to check the list of groups in a given context.

class kotti.security.AbstractPrincipals
This class serves as documentation and defines what methods are expected from a Principals database.

Principals mostly provides dict-like access to the principal objects in the database. In addition, there’s the
‘search’ method which allows searching users and groups.

‘hash_password’ is for initial hashing of a clear text password, while ‘validate_password’ is used by the login
to see if the entered password matches the hashed password that’s already in the database.

Use the ‘kotti.principals’ settings variable to override Kotti’s default Principals implementation with your own.

hash_password(password)
Return a hash of the given password.

This is what’s stored in the database as ‘principal.password’.

keys()
Return a list of principal ids that are in the database.

search(**kwargs)
Return an iterable with principal objects that correspond to the search arguments passed in.

This example would return all principals with the id ‘bob’:

get_principals().search(name=u’bob’)

Here, we ask for all principals that have ‘bob’ in either their ‘name’ or their ‘title’. We pass ‘bob‘ instead
of ‘bob’ to indicate that we want case-insensitive substring matching:

get_principals().search(name=u’bob‘, title=u’bob‘)

This call should fail with AttributeError unless there’s a ‘foo’ attribute on principal objects that supports
search:

19

Kotti Documentation, Release 0.2.4

get_principals().search(name=u’bob’, foo=u’bar’)

validate_password(clear, hashed)
Returns True if the clear text password matches the hash.

class kotti.security.Principal(name, password=None, active=True, confirm_token=None, ti-
tle=u’‘, email=None, groups=())

A minimal ‘Principal’ implementation.

The attributes on this object correspond to what one ought to implement to get full support by the system. You’re
free to add additional attributes.

•As convenience, when passing ‘password’ in the initializer, it is hashed using
‘get_principals().hash_password’

•The boolean ‘active’ attribute defines whether a principal may log in. This allows the deactivation of
accounts without deleting them.

•The ‘confirm_token’ attribute is set whenever a user has forgotten their password. This token is used to
identify the receiver of the email. This attribute should be set to ‘None’ once confirmation has succeeded.

7.2 Indices and tables

• genindex

• modindex

• search

20 Chapter 7. API

Python Module Index

k
kotti.events, 13
kotti.views.slots, 12

21

Kotti Documentation, Release 0.2.4

22 Python Module Index

Index

A
AbstractPrincipals (class in kotti.security), 19

H
hash_password() (kotti.security.AbstractPrincipals

method), 19

K
keys() (kotti.security.AbstractPrincipals method), 19
kotti.events (module), 13
kotti.views.slots (module), 12

L
list_groups() (in module kotti.security), 19

P
Principal (class in kotti.security), 20

S
search() (kotti.security.AbstractPrincipals method), 19
set_groups() (in module kotti.security), 19

V
validate_password() (kotti.security.AbstractPrincipals

method), 20

23

	Features
	Try it out
	Under the hood

	Installation
	Requirements
	Installation using virtualenv

	Configuration and customization
	INI File
	Overview of settings
	kotti.secret and kotti.secret2
	Adjusting the look & feel with kotti.override_assets
	Using add-ons
	Configuring authentication and authorization
	Sessions

	Writing add-ons
	Content types
	Configuring custom views, subscribers and more
	kotti.views.slots
	kotti.events
	kotti.configurators
	Security

	Contact us
	Tests
	API
	API Documentation
	Indices and tables

	Python Module Index

